These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36991817)
1. Human Arm Workout Classification by Arm Sleeve Device Based on Machine Learning Algorithms. Chun S; Kim S; Kim J Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991817 [TBL] [Abstract][Full Text] [Related]
2. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection. Kim H; Kim S; Lim D; Jeong W Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808240 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Sleeve Pattern and Fit on E-Textile Electromyography (EMG) Electrode Performance in Smart Clothing Design. Goncu-Berk G; Tuna BG Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451070 [TBL] [Abstract][Full Text] [Related]
4. Performance of electromyography recorded using textile electrodes in classifying arm movements. Li G; Geng Y; Tao D; Zhou P Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4243-6. PubMed ID: 22255276 [TBL] [Abstract][Full Text] [Related]
5. Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout. Preatoni E; Nodari S; Lopomo NF Front Bioeng Biotechnol; 2020; 8():664. PubMed ID: 32733863 [TBL] [Abstract][Full Text] [Related]
6. Measuring Surface Electromyography with Textile Electrodes in a Smart Leg Sleeve. Amitrano F; Coccia A; Pagano G; Biancardi A; Tombolini G; Marsico V; D'Addio G Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732868 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear. Kim H; Rho S; Han S; Lim D; Jeong W Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080714 [TBL] [Abstract][Full Text] [Related]
8. High-density EMG E-textile systems for the control of active prostheses. Farina D; Lorrain T; Negro F; Jiang N Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3591-3. PubMed ID: 21096838 [TBL] [Abstract][Full Text] [Related]
9. A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study. Alizadeh-Meghrazi M; Sidhu G; Jain S; Stone M; Eskandarian L; Toossi A; Popovic MR Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062627 [TBL] [Abstract][Full Text] [Related]
10. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms. Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593 [TBL] [Abstract][Full Text] [Related]
11. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Karthick PA; Ghosh DM; Ramakrishnan S Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346 [TBL] [Abstract][Full Text] [Related]
12. Data-Driven Approach for Upper Limb Fatigue Estimation Based on Wearable Sensors. Otálora S; Segatto MEV; Monteiro ME; Múnera M; Díaz CAR; Cifuentes CA Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005677 [TBL] [Abstract][Full Text] [Related]
13. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device? Lui J; Menon C Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354 [TBL] [Abstract][Full Text] [Related]
14. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734 [TBL] [Abstract][Full Text] [Related]
15. Sock-Type Wearable Sensor for Estimating Lower Leg Muscle Activity Using Distal EMG Signals. Isezaki T; Kadone H; Niijima A; Aoki R; Watanabe T; Kimura T; Suzuki K Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027302 [TBL] [Abstract][Full Text] [Related]
16. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms. Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970 [TBL] [Abstract][Full Text] [Related]
17. High-density surface EMG maps from upper-arm and forearm muscles. Rojas-Martínez M; Mañanas MA; Alonso JF J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679 [TBL] [Abstract][Full Text] [Related]
18. The Impact of Wearable Technologies in Health Research: Scoping Review. Huhn S; Axt M; Gunga HC; Maggioni MA; Munga S; Obor D; Sié A; Boudo V; Bunker A; Sauerborn R; Bärnighausen T; Barteit S JMIR Mhealth Uhealth; 2022 Jan; 10(1):e34384. PubMed ID: 35076409 [TBL] [Abstract][Full Text] [Related]
19. Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification. Lara JE; Cheng LK; Rohrle O; Paskaranandavadivel N IEEE Trans Biomed Eng; 2022 May; 69(5):1758-1766. PubMed ID: 34847014 [TBL] [Abstract][Full Text] [Related]
20. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal. Bin Heyat MB; Akhtar F; Abbas SJ; Al-Sarem M; Alqarafi A; Stalin A; Abbasi R; Muaad AY; Lai D; Wu K Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]