These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36991858)
1. Agricultural Robot-Centered Recognition of Early-Developmental Pest Stage Based on Deep Learning: A Case Study on Fall Armyworm ( Obasekore H; Fanni M; Ahmed SM; Parque V; Kang BY Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991858 [TBL] [Abstract][Full Text] [Related]
2. Based on the multi-scale information sharing network of fine-grained attention for agricultural pest detection. Linfeng W; Yong L; Jiayao L; Yunsheng W; Shipu X PLoS One; 2023; 18(10):e0286732. PubMed ID: 37796844 [TBL] [Abstract][Full Text] [Related]
3. Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique. Hadipour-Rokni R; Askari Asli-Ardeh E; Jahanbakhshi A; Esmaili Paeen-Afrakoti I; Sabzi S Comput Biol Med; 2023 Mar; 155():106611. PubMed ID: 36774891 [TBL] [Abstract][Full Text] [Related]
4. Population Development, Fecundity, and Flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) Reared on Three Green Manure Crops: Implications For an Ecologically Based Pest Management Approach in China. Wu F; Zhang L; Liu Y; Cheng Y; Su J; Sappington TW; Jiang X J Econ Entomol; 2022 Feb; 115(1):124-132. PubMed ID: 34897490 [TBL] [Abstract][Full Text] [Related]
5. Recognition of Grasping Patterns Using Deep Learning for Human-Robot Collaboration. Amaral P; Silva F; Santos V Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960688 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Graph Fitting and Sparse Deep Learning Model for Robot Pose Estimation. Rodziewicz-Bielewicz J; Korzeń M Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080976 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing. Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819 [TBL] [Abstract][Full Text] [Related]
8. EResNet-SVM: an overfitting-relieved deep learning model for recognition of plant diseases and pests. Xiong H; Li J; Wang T; Zhang F; Wang Z J Sci Food Agric; 2024 Aug; 104(10):6018-6034. PubMed ID: 38483173 [TBL] [Abstract][Full Text] [Related]
9. Bidirectional Predation Between Larvae of the Hoverfly Episyrphus balteatus (Diptera: Syrphidae) and the Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Li H; Wu K J Econ Entomol; 2022 Apr; 115(2):545-555. PubMed ID: 35078216 [TBL] [Abstract][Full Text] [Related]
10. Indoor Place Category Recognition for a Cleaning Robot by Fusing a Probabilistic Approach and Deep Learning. Choe S; Seong H; Kim E IEEE Trans Cybern; 2022 Aug; 52(8):7265-7276. PubMed ID: 33600336 [TBL] [Abstract][Full Text] [Related]
11. Deep learning based real-time tourist spots detection and recognition mechanism. Chen YC; Yu KM; Kao TH; Hsieh HL Sci Prog; 2021 Sep; 104(3_suppl):368504211044228. PubMed ID: 34668799 [TBL] [Abstract][Full Text] [Related]
12. The distribution of covert microbial natural enemies of a globally invasive crop pest, fall armyworm, in Africa: Enemy release and spillover events. Withers AJ; Rice A; de Boer J; Donkersley P; Pearson AJ; Chipabika G; Karangwa P; Uzayisenga B; Mensah BA; Mensah SA; Nkunika POY; Kachigamba D; Smith JA; Jones CM; Wilson K J Anim Ecol; 2022 Sep; 91(9):1826-1841. PubMed ID: 35678697 [TBL] [Abstract][Full Text] [Related]
13. Gene Expression Differences Between Developmental Stages of the Fall Armyworm ( Wang L; Yang Q; Tang R; Liu X; Fan Z; Li J; Price M; Yue B DNA Cell Biol; 2021 Apr; 40(4):580-588. PubMed ID: 33761271 [TBL] [Abstract][Full Text] [Related]
14. Segmentation and detection of crop pests using novel U-Net with hybrid deep learning mechanism. Biradar N; Hosalli G Pest Manag Sci; 2024 Aug; 80(8):3795-3807. PubMed ID: 38506377 [TBL] [Abstract][Full Text] [Related]
15. Standing-Posture Recognition in Human-Robot Collaboration Based on Deep Learning and the Dempster-Shafer Evidence Theory. Li G; Liu Z; Cai L; Yan J Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093206 [TBL] [Abstract][Full Text] [Related]
16. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Zheng YY; Kong JL; Jin XB; Wang XY; Zuo M Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832283 [TBL] [Abstract][Full Text] [Related]
17. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition. Fuentes A; Yoon S; Kim SC; Park DS Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869539 [TBL] [Abstract][Full Text] [Related]
18. Recognition pest by image-based transfer learning. Dawei W; Limiao D; Jiangong N; Jiyue G; Hongfei Z; Zhongzhi H J Sci Food Agric; 2019 Aug; 99(10):4524-4531. PubMed ID: 30868598 [TBL] [Abstract][Full Text] [Related]
19. Farmer perception of fall armyworm (Spodoptera frugiderda J.E. Smith) and farm-level management practices in Zambia. Kansiime MK; Mugambi I; Rwomushana I; Nunda W; Lamontagne-Godwin J; Rware H; Phiri NA; Chipabika G; Ndlovu M; Day R Pest Manag Sci; 2019 Oct; 75(10):2840-2850. PubMed ID: 31148397 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the earwig, Doru lineare, as a predator of larvae of the fall armyworm, Spodoptera frugiperda: a functional response study. Sueldo MR; Bruzzone OA; Virla EG J Insect Sci; 2010; 10():38. PubMed ID: 20575739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]