These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36991878)

  • 1. The Enzymatic Doped/Undoped Poly-Silicon Nanowire Sensor for Glucose Concentration Measurement.
    Hsu CC; Ho WK; Wu CC; Dai CL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly-silicon nanowire sensor for sodium chloride concentration measurement.
    Kan YC; Hsu CC; Ho WK; Wu TC; Ho YY; Yang CY
    Biomed Mater Eng; 2014; 24(1):95-9. PubMed ID: 24211887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection.
    Wu CC
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics.
    Zafar S; D'Emic C; Jagtiani A; Kratschmer E; Miao X; Zhu Y; Mo R; Sosa N; Hamann H; Shahidi G; Riel H
    ACS Nano; 2018 Jul; 12(7):6577-6587. PubMed ID: 29932634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CMOS-compatible poly-Si nanowire device with hybrid sensor/memory characteristics for System-on-Chip applications.
    Chen MC; Chen HY; Lin CY; Chien CH; Hsieh TF; Horng JT; Qiu JT; Huang CC; Ho CH; Yang FL
    Sensors (Basel); 2012; 12(4):3952-63. PubMed ID: 22666012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.
    Li Z; Leung C; Gao F; Gu Z
    Sensors (Basel); 2015 Sep; 15(9):22473-89. PubMed ID: 26404303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.
    Hazut O; Agarwala A; Subramani T; Waichman S; Yerushalmi R
    J Vis Exp; 2013 Dec; (82):50770. PubMed ID: 24326774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective doping of silicon nanowires by means of electron beam stimulated oxide etching.
    Pennelli G; Totaro M; Piotto M
    Nano Lett; 2012 Feb; 12(2):1096-101. PubMed ID: 22263806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seebeck coefficient of silicon nanowire forests doped by thermal diffusion.
    Elyamny S; Dimaggio E; Pennelli G
    Beilstein J Nanotechnol; 2020; 11():1707-1713. PubMed ID: 33224701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Glucose Fiber Sensor for Glucose Concentration Measurement with a Heterodyne Interferometry.
    Hsu CC; Chung WY; Chang CY; Wu CC; Lee CL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, optical and sensing properties of pure and Cu-doped SnO2 nanowires.
    Johari A; Johari A; Bhatnagar MC; Sharma M
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5288-92. PubMed ID: 24758018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays.
    Wong WS; Raychaudhuri S; Lujan R; Sambandan S; Street RA
    Nano Lett; 2011 Jun; 11(6):2214-8. PubMed ID: 21591655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic study on dopant-distributions in realistically sized, highly P-doped Si nanowires.
    Ryu H; Kim J; Hong KH
    Nano Lett; 2015 Jan; 15(1):450-6. PubMed ID: 25555203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.
    Sun Z; Hazut O; Huang BC; Chiu YP; Chang CS; Yerushalmi R; Lauhon LJ; Seidman DN
    Nano Lett; 2016 Jul; 16(7):4490-500. PubMed ID: 27351447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-down processed silicon nanowires for thermoelectric applications.
    Jang M; Park Y; Hyun Y; Jun M; Choi SJ; Zyung T; Kim JD
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3552-4. PubMed ID: 22849166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping induced structural changes in colloidal semiconductor nanowires.
    Kandel KP; Pietsch U; Li Z; Oztürk OK
    Phys Chem Chem Phys; 2013 Mar; 15(12):4444-50. PubMed ID: 23407654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatically Doped Silicon Nanowire Arrays for Multispectral Photodetectors.
    Um HD; Solanki A; Jayaraman A; Gordon RG; Habbal F
    ACS Nano; 2019 Oct; 13(10):11717-11725. PubMed ID: 31577128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the gas sensing performance of single PEDOT nanowire devices.
    Hangarter CM; Hernandez SC; He X; Chartuprayoon N; Choa YH; Myung NV
    Analyst; 2011 Jun; 136(11):2350-8. PubMed ID: 21509374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seebeck coefficient characterization of highly doped n- and p-type silicon nanowires for thermoelectric device applications fabricated with top-down approach.
    Kim J; Hyun Y; Park Y; Choi W; Kim S; Jeon H; Zyung T; Jang M
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6416-9. PubMed ID: 24205673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.