These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36991943)

  • 1. Attitude-Orbit Coupled Control of Gravitational Wave Detection Spacecraft with Communication Delays.
    Zhang Y; Liu Y; Yang J; Lu Z; Zhang J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attitude-orbit coupled sliding mode tracking control for spacecraft formation with event-triggered transmission.
    Fan R; Chen X; Liu M; Cao X
    ISA Trans; 2022 May; 124():338-348. PubMed ID: 33243449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Control for Gravitational Wave Detection Formation Considering Time-Varying Communication Delays.
    Zhang Y; Liu Y; Zhang J; Lu Z; Yang J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fixed-time regulation of spacecraft orbit and attitude coordination with optimal actuation allocation using dual quaternion.
    Sun L; Huang Y; Fei H; Xiao B; Yeatman EM; Montazeri A; Wang Z
    Front Robot AI; 2023; 10():1138115. PubMed ID: 36866152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed coordinated attitude tracking control for spacecraft formation with communication delays.
    Wang W; Li C; Sun Y; Ma G
    ISA Trans; 2019 Feb; 85():97-106. PubMed ID: 30392725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle-Only Cooperative Orbit Determination Considering Attitude Uncertainty.
    Shi Y; Wang J; Liu C; Wang Y; Xu Q; Zhou X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence.
    Dong H; Hu Q; Ma G
    ISA Trans; 2016 Mar; 61():87-94. PubMed ID: 26775087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Quaternion Analytic LQR Control Design for Spacecraft Proximity Operations.
    Stanfield K; Bani Younes A
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.
    Zou AM; Kumar KD
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1155-62. PubMed ID: 24807141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed coordinated attitude tracking control of a multi-spacecraft system with dynamic leader under communication delays.
    Zhou Z; Zhang Z; Wang Y
    Sci Rep; 2022 Sep; 12(1):15048. PubMed ID: 36057686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Low-Thrust Maneuver Planning for Space Gravitational Wave Formation Reconfiguration Based on Improved Particle Swarm Optimization Algorithm.
    Lu Z; Wang J; Lian X; Zhang J; Zhang Y; Yang J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attitude output feedback control for rigid spacecraft with finite-time convergence.
    Hu Q; Niu G
    ISA Trans; 2017 Sep; 70():173-186. PubMed ID: 28789773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonsingular fixed-time attitude coordinated tracking control for multiple rigid spacecraft.
    Tian Y; Du C; Lu P; Jiang Q; Liu H
    ISA Trans; 2022 Oct; 129(Pt B):243-256. PubMed ID: 35248367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.
    Zou AM; Dev Kumar K; Hou ZG
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shifting.
    Virgili-Llop J; Polat HC; Romano M
    Front Robot AI; 2019; 6():7. PubMed ID: 33501024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect-Neural-Approximation-Based Fault-Tolerant Integrated Attitude and Position Control of Spacecraft Proximity Operations.
    Alsaade FW; Yao Q; Al-Zahrani MS; Alzahrani AS; Jahanshahi H
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural-Network-Based Adaptive Singularity-Free Fixed-Time Attitude Tracking Control for Spacecrafts.
    Chen Q; Xie S; He X
    IEEE Trans Cybern; 2021 Oct; 51(10):5032-5045. PubMed ID: 33119520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.
    An-Min Zou ; Kumar KD; Zeng-Guang Hou ; Xi Liu
    IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):950-63. PubMed ID: 21266316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid triggering design for global attitude synchronization of networked rigid bodies.
    Zhang F; Meng D; Wu ZG; Song Q
    ISA Trans; 2023 Nov; 142():188-197. PubMed ID: 37517950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
    Huo M; Zhao J; Xie S; Qi N
    PLoS One; 2015; 10(5):e0125901. PubMed ID: 25950179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.