These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36991950)

  • 1. Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR.
    Sánchez M; Morales J; Martínez JL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traversable Region Detection and Tracking for a Sparse 3D Laser Scanner for Off-Road Environments Using Range Images.
    An J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traversability Assessment and Trajectory Planning of Unmanned Ground Vehicles with Suspension Systems on Rough Terrain.
    Zhang K; Yang Y; Fu M; Wang M
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatically Annotated Dataset of a Ground Mobile Robot in Natural Environments via Gazebo Simulations.
    Sánchez M; Morales J; Martínez JL; Fernández-Lozano JJ; García-Cerezo A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller.
    Li J; Chavez-Galaviz J; Azizzadenesheli K; Mahmoudian N
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive Navigation on Natural Environments by Continuous Classification of Ground Traversability.
    Martínez JL; Morales J; Sánchez M; Morán M; Reina AJ; Fernández-Lozano JJ
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review.
    Guastella DC; Muscato G
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.
    Gao Y; Liu S; Atia MM; Noureldin A
    Sensors (Basel); 2015 Sep; 15(9):23286-302. PubMed ID: 26389906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep imitation learning for 3D navigation tasks.
    Hussein A; Elyan E; Gaber MM; Jayne C
    Neural Comput Appl; 2018; 29(7):389-404. PubMed ID: 29576690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation.
    Wu J; Zhou Y; Yang H; Huang Z; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework.
    Olayemi KB; Van M; McLoone S; McIlvanna S; Sun Y; Close J; Nguyen NM
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Analytic Model for Negative Obstacle Detection with Lidar and Numerical Validation Using Physics-Based Simulation.
    Goodin C; Carrillo J; Monroe JG; Carruth DW; Hudson CR
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Pedestrian Detectors for LiDAR Sensor Trained on Custom Synthetic, Real and Mixed Datasets.
    Jabłoński P; Iwaniec J; Zabierowski W
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors.
    Gomes T; Matias D; Campos A; Cunha L; Roriz R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Development of a Low-Cost UGV 3D Phenotyping Platform with Integrated LiDAR and Electric Slide Rail.
    Cai S; Gou W; Wen W; Lu X; Fan J; Guo X
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on obstacle avoidance algorithm for unmanned ground vehicle based on multi-sensor information fusion.
    Lv J; Qu C; Du S; Zhao X; Yin P; Zhao N; Qu S
    Math Biosci Eng; 2021 Jan; 18(2):1022-1039. PubMed ID: 33757173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time route planning of unmanned aerial vehicles based on improved soft actor-critic algorithm.
    Zhou Y; Shu J; Zheng X; Hao H; Song H
    Front Neurorobot; 2022; 16():1025817. PubMed ID: 36545396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.