These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36991985)

  • 1. Semiconductor Gas Sensors for Detecting Chemical Warfare Agents and Their Simulants.
    Witkiewicz Z; Jasek K; Grabka M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Wave Sensors for Detection of Blister Chemical Warfare Agents and Their Simulants.
    Grabka M; Witkiewicz Z; Jasek K; Piwowarski K
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-Bond Acidic Materials in Acoustic Wave Sensors for Nerve Chemical Warfare Agents' Detection.
    Grabka M; Jasek K; Witkiewicz Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on nanomaterial-based p-type semiconductor gas sensors.
    Ahmed S; Sinha SK
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):24975-24986. PubMed ID: 35764738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.
    Wiederoder MS; Nallon EC; Weiss M; McGraw SK; Schnee VP; Bright CJ; Polcha MP; Paffenroth R; Uzarski JR
    ACS Sens; 2017 Nov; 2(11):1669-1678. PubMed ID: 29019400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor.
    Ou LX; Liu MY; Zhu LY; Zhang DW; Lu HL
    Nanomicro Lett; 2022 Oct; 14(1):206. PubMed ID: 36271065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry.
    Wawrzyniak J
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor.
    Liu K; Qin M; Shi Q; Wang G; Zhang J; Ding N; Xi H; Liu T; Kong J; Fang Y
    Anal Chem; 2022 Aug; 94(32):11151-11158. PubMed ID: 35921590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles-enhanced ion-transmission mass spectrometry for highly sensitive detection of chemical warfare agent simulants.
    Zhang L; Zhao X; Cheng H; Kong J; Zhao Y; Zhu X; Zhang S; Zhang X
    Talanta; 2018 Dec; 190():403-409. PubMed ID: 30172526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-oxide-semiconductor resistive gas sensors for fish freshness detection.
    Wu K; Debliquy M; Zhang C
    Compr Rev Food Sci Food Saf; 2023 Mar; 22(2):913-945. PubMed ID: 36537904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors.
    Francioso L; De Pascali C; Capone S; Siciliano P
    Nanotechnology; 2012 Mar; 23(9):095302. PubMed ID: 22327322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HFIP-Functionalized Co
    Alali KT; Liu J; Chen R; Liu Q; Zhang H; Li J; Hou J; Li R; Wang J
    Chemistry; 2019 Sep; 25(51):11892-11902. PubMed ID: 31309626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.
    Witkiewicz Z; Neffe S; Sliwka E; Quagliano J
    Crit Rev Anal Chem; 2018 Sep; 48(5):337-371. PubMed ID: 29533075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Performance of Surface Acoustic Wave Sensors by Plasma Treatments for Chemical Warfare Agents Monitoring.
    Kim E; Kim J; Ha S; Song C; Kim JH
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7145-7150. PubMed ID: 32604573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid,
    Brown HM; McDaniel TJ; Doppalapudi KR; Mulligan CC; Fedick PW
    Analyst; 2021 May; 146(10):3127-3136. PubMed ID: 33999086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.
    Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y
    Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors.
    Fan S; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE
    Commun Chem; 2021 Mar; 4(1):45. PubMed ID: 36697578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers.
    Matatagui D; Fernández MJ; Fontecha J; Sayago I; Gràcia I; Cané C; Horrillo MC; Santos JP
    Talanta; 2014 Mar; 120():408-12. PubMed ID: 24468389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.