BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 36991992)

  • 21. Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review.
    Khan MA; Saibene M; Das R; Brunner I; Puthusserypady S
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34736239
    [No Abstract]   [Full Text] [Related]  

  • 22. Design of Wearable Hand Rehabilitation Glove With Bionic Fiber-Reinforced Actuator.
    Han Y; Xu Q; Wu F
    IEEE J Transl Eng Health Med; 2022; 10():2100610. PubMed ID: 35992370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and Testing of a Soft Exoskeleton Robotic Hand Training Device.
    Jackson G; Abdullah HA
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review.
    Kian A; Widanapathirana G; Joseph AM; Lai DTH; Begg R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.
    Biggar S; Yao W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller.
    Xie C; Yang Q; Huang Y; Su S; Xu T; Song R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1332-1342. PubMed ID: 34813476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton Digital Twin for Stroke Rehabilitation.
    Ratschat A; Lomba TMC; Gasperina SD; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hand motion analysis during robot-aided rehabilitation in chronic stroke.
    Cordella F; Scotto Di Luzio F; Bravi M; Santacaterina F; Bressi F; Zollo L
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):45-52. Technology in Medicine. PubMed ID: 33386033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. User-Driven Functional Movement Training With a Wearable Hand Robot After Stroke.
    Park S; Fraser M; Weber LM; Meeker C; Bishop L; Geller D; Stein J; Ciocarlie M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2265-2275. PubMed ID: 32886611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soft Robotic Bilateral Hand Rehabilitation System for Fine Motor Learning
    Haghshenas-Jaryani M; Pande C; Muthu Wijesundara BJ
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():337-342. PubMed ID: 31374652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain-Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?
    Colucci A; Vermehren M; Cavallo A; Angerhöfer C; Peekhaus N; Zollo L; Kim WS; Paik NJ; Soekadar SR
    Neurorehabil Neural Repair; 2022 Dec; 36(12):747-756. PubMed ID: 36426541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.
    Yap HK; Lim JH; Nasrallah F; Yeow CH
    Front Neurosci; 2017; 11():547. PubMed ID: 29062267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator.
    Cardona M; García Cena CE; Serrano F; Saltaren R
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ARMIA: A Sensorized Arm Wearable for Motor Rehabilitation.
    Garcia GJ; Alepuz A; Balastegui G; Bernat L; Mortes J; Sanchez S; Vera E; Jara CA; Morell V; Pomares J; Ramon JL; Ubeda A
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Home rehabilitation supported by a wearable soft-robotic device for improving hand function in older adults: A pilot randomized controlled trial.
    Radder B; Prange-Lasonder GB; Kottink AIR; Holmberg J; Sletta K; van Dijk M; Meyer T; Melendez-Calderon A; Buurke JH; Rietman JS
    PLoS One; 2019; 14(8):e0220544. PubMed ID: 31386685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.