These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36992035)

  • 1. Plastic Classification Using Optical Parameter Features Measured with the TMF8801 Direct Time-of-Flight Depth Sensor.
    Becker CN; Koerner LJ
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Becker, C.N.; Koerner, L.J. Plastic Classification Using Optical Parameter Features Measured with the TMF8801 Direct Time-of-Flight Depth Sensor.
    Becker CN; Koerner LJ
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material Classification from Time-of-Flight Distortions.
    Tanaka K; Mukaigawa Y; Funatomi T; Kubo H; Matsushita Y; Yagi Y
    IEEE Trans Pattern Anal Mach Intell; 2019 Dec; 41(12):2906-2918. PubMed ID: 30222552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment.
    Petusseau AF; Streeter SS; Ulku A; Feng Y; Samkoe KS; Bruschini C; Charbon E; Pogue BW; Bruza P
    J Biomed Opt; 2024 Jan; 29(1):016004. PubMed ID: 38235320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance Error Correction in Time-of-Flight Cameras Using Asynchronous Integration Time.
    Baek ET; Yang HJ; Kim SH; Lee G; Jeong H
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Time-of-Flight Image Sensor Using 8-Tap P-N Junction Demodulator Pixels.
    Miyazawa R; Shirakawa Y; Mars K; Yasutomi K; Kagawa K; Aoyama S; Kawahito S
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.
    Pycinski B; Czajkowska J; Badura P; Juszczyk J; Pietka E
    PLoS One; 2016; 11(7):e0159493. PubMed ID: 27434396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An 8-Tap CMOS Lock-In Pixel Image Sensor for Short-Pulse Time-of-Flight Measurements.
    Shirakawa Y; Yasutomi K; Kagawa K; Aoyama S; Kawahito S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Linearity High-Resolution Time-of-Flight Linear-Array Digital Image Sensor Using Time-Domain Feedback.
    Kim J; Yasutomi K; Kagawa K; Kawahito S
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative stopping power resolution in time-of-flight proton CT.
    Krah N; Dauvergne D; Létang JM; Rit S; Testa É
    Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35603758
    [No Abstract]   [Full Text] [Related]  

  • 12. Pulse Based Time-of-Flight Range Sensing.
    Sarbolandi H; Plack M; Kolb A
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29882901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Non-Contact Respiratory Rate Monitoring of Neonates Based on Synchronous Evaluation of a 3D Time-of-Flight Camera and a Microwave Interferometric Radar Sensor.
    Gleichauf J; Herrmann S; Hennemann L; Krauss H; Nitschke J; Renner P; Niebler C; Koelpin A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static and Dynamic Accuracy of an Innovative Miniaturized Wearable Platform for Short Range Distance Measurements for Human Movement Applications.
    Bertuletti S; Cereatti A; Comotti D; Caldara M; Della Croce U
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth Errors Analysis and Correction for Time-of-Flight (ToF) Cameras.
    He Y; Liang B; Zou Y; He J; Yang J
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time division multiplexing based multi-spectral semantic camera for LiDAR applications.
    Kim S; Jeong TI; Kim S; Choi E; Yang E; Song M; Eom TJ; Kim CS; Gliserin A; Kim S
    Sci Rep; 2024 May; 14(1):11445. PubMed ID: 38769129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth Quality Improvement with a 607 MHz Time-Compressive Computational Pseudo-dToF CMOS Image Sensor.
    Pham AN; Ibrahim T; Yasutomi K; Kawahito S; Nagahara H; Kagawa K
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CS-ToF: High-resolution compressive time-of-flight imaging.
    Li F; Chen H; Pediredla A; Yeh C; He K; Veeraraghavan A; Cossairt O
    Opt Express; 2017 Dec; 25(25):31096-31110. PubMed ID: 29245787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SU-E-I-92: Accuracy Evaluation of Depth Data in Microsoft Kinect.
    Kozono K; Aoki M; Ono M; Kamikawa Y; Arimura H; Toyofuku F
    Med Phys; 2012 Jun; 39(6Part5):3646. PubMed ID: 28517624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.