These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36992041)
21. Recurrent Neural Network Enabled Continuous Motion Estimation of Lower Limb Joints From Incomplete sEMG Signals. Wang G; Jin L; Zhang J; Duan X; Yi J; Zhang M; Sun Z IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3577-3589. PubMed ID: 39269795 [TBL] [Abstract][Full Text] [Related]
22. Long short-term memory (LSTM) recurrent neural network for muscle activity detection. Ghislieri M; Cerone GL; Knaflitz M; Agostini V J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720 [TBL] [Abstract][Full Text] [Related]
23. Multi-Joint Leg Moment Estimation During Walking Using Thigh or Shank Angles. Eslamy M; Rastgaar M IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1108-1118. PubMed ID: 36288217 [TBL] [Abstract][Full Text] [Related]
24. Estimation of Lower Limb Joint Angles and Joint Moments during Different Locomotive Activities Using the Inertial Measurement Units and a Hybrid Deep Learning Model. Wang F; Liang W; Afzal HMR; Fan A; Li W; Dai X; Liu S; Hu Y; Li Z; Yang P Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005427 [TBL] [Abstract][Full Text] [Related]
25. Predicting Knee Joint Contact Forces During Normal Walking Using Kinematic Inputs With a Long-Short Term Neural Network. Bennett HJ; Estler K; Valenzuela K; Weinhandl JT J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38270972 [TBL] [Abstract][Full Text] [Related]
26. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements. Yoshioka S; Nagano A; Himeno R; Fukashiro S Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922 [TBL] [Abstract][Full Text] [Related]
27. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Ericson M Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609 [TBL] [Abstract][Full Text] [Related]
28. Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response. Hoy MG; Zernicke RF; Smith JL J Neurophysiol; 1985 Nov; 54(5):1282-94. PubMed ID: 4078617 [TBL] [Abstract][Full Text] [Related]
29. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions. Doorenbosch CA; Joosten A; Harlaar J J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613 [TBL] [Abstract][Full Text] [Related]
30. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Lloyd DG; Besier TF J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444 [TBL] [Abstract][Full Text] [Related]
31. Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation. Xu L; Chen X; Cao S; Zhang X; Chen X Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257489 [TBL] [Abstract][Full Text] [Related]
32. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters. Raj R; Sivanandan KS J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692 [TBL] [Abstract][Full Text] [Related]
33. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921 [TBL] [Abstract][Full Text] [Related]
35. Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques. Kaya E; Argunsah H Comput Methods Biomech Biomed Engin; 2024 Sep; ():1-11. PubMed ID: 39235388 [TBL] [Abstract][Full Text] [Related]
36. Predictions of knee and ankle moments of force in walking from EMG and kinematic data. Olney SJ; Winter DA J Biomech; 1985; 18(1):9-20. PubMed ID: 3980492 [TBL] [Abstract][Full Text] [Related]
37. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks. Bian Q; Castellani M; Shepherd D; Duan J; Ding Z IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960 [TBL] [Abstract][Full Text] [Related]
38. Estimation of Knee Joint Angle from Surface EMG Using Multiple Kernels Relevance Vector Regression. Li HB; Guan XR; Li Z; Zou KF; He L Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430848 [TBL] [Abstract][Full Text] [Related]
39. Prediction of ground reaction force and joint moments based on optical motion capture data during gait. Mundt M; Koeppe A; David S; Bamer F; Potthast W; Markert B Med Eng Phys; 2020 Dec; 86():29-34. PubMed ID: 33261730 [TBL] [Abstract][Full Text] [Related]
40. A neural network representation of electromyography and joint dynamics in human gait. Sepulveda F; Wells DM; Vaughan CL J Biomech; 1993 Feb; 26(2):101-9. PubMed ID: 8429053 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]