These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36992070)

  • 1. Photoplethysmography Driven Hypertension Identification: A Pilot Study.
    Yan L; Wei M; Hu S; Sheng B
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time PPG Signal Conditioning with Long Short-Term Memory (LSTM) Network for Wearable Devices.
    Wójcikowski M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study.
    Kwon S; Hong J; Choi EK; Lee B; Baik C; Lee E; Jeong ER; Koo BK; Oh S; Yi Y
    J Med Internet Res; 2020 May; 22(5):e16443. PubMed ID: 32348254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification.
    Liang Y; Chen Z; Ward R; Elgendi M
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30373211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoplethysmographic-based automated sleep-wake classification using a support vector machine.
    Abdul Motin M; Kamakar C; Marimuthu P; Penzel T
    Physiol Meas; 2020 Aug; 41(7):075013. PubMed ID: 32428878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography.
    Cano J; Fácila L; Gracia-Baena JM; Zangróniz R; Alcaraz R; Rieta JJ
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning approach for hypertension detection based on photoplethysmography and clinical data.
    Martinez-Ríos E; Montesinos L; Alfaro-Ponce M
    Comput Biol Med; 2022 Jun; 145():105479. PubMed ID: 35398810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Teenager Physical Fitness Evaluation Model Based on 1D-CNN with LSTM and Wearable Running PPG Recordings.
    Guo J; Wan B; Zheng S; Song A; Huang W
    Biosensors (Basel); 2022 Mar; 12(4):. PubMed ID: 35448262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study.
    Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y
    JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection.
    Mohagheghian F; Han D; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Otabil EM; Noorishirazi K; Scott J; Lessard D; Wang Z; Whitcomb C; Tran KV; Fitzgibbons TP; McManus DD; Chon KH
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2982-2993. PubMed ID: 35275809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust PPG motion artifact detection using a 1-D convolution neural network.
    Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E
    Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heart rate extraction algorithm based on adaptive heart rate search model].
    Meng R; Li Z; Yu H; Niu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):516-526. PubMed ID: 35788521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables.
    Guo Z; Ding C; Hu X; Rudin C
    Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126
    [No Abstract]   [Full Text] [Related]  

  • 17. A Supervised Approach to Robust Photoplethysmography Quality Assessment.
    Pereira T; Gadhoumi K; Ma M; Liu X; Xiao R; Colorado RA; Keenan KJ; Meisel K; Hu X
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):649-657. PubMed ID: 30951482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mental Stress Detection Using a Wearable In-Ear Plethysmography.
    Barki H; Chung WY
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks.
    Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study.
    Lan KC; Raknim P; Kao WF; Huang JH
    J Med Syst; 2018 Apr; 42(6):103. PubMed ID: 29680866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.