BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36992405)

  • 1. Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer.
    Tscheuschner G; Ponader M; Raab C; Weider PS; Hartfiel R; Kaufmann JO; Völzke JL; Bosc-Bierne G; Prinz C; Schwaar T; Andrle P; Bäßler H; Nguyen K; Zhu Y; Mey ASJS; Mostafa A; Bald I; Weller MG
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.
    Díaz-Valle A; García-Salcedo YM; Chávez-Calvillo G; Silva-Rosales L; Carrillo-Tripp M
    J Virol Methods; 2015 Dec; 225():23-9. PubMed ID: 26342905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly secretory expression of recombinant cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and in-vitro encapsulation of ruthenium nanoparticles for catalysis.
    Zhu J; Yang K; Liu A; Lu X; Yang L; Zhao Q
    Protein Expr Purif; 2020 Oct; 174():105679. PubMed ID: 32534017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoreactors via Encapsulation of Catalytic Gold Nanoparticles within Cowpea Chlorotic Mottle Virus Protein Cages.
    Liu A; de Ruiter MV; Maassen SJ; Cornelissen JJLM
    Methods Mol Biol; 2018; 1798():1-9. PubMed ID: 29868947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Purification Strategy for Cowpea Chlorotic Mottle Virus-Like Particles Produced by the IC-BEVS.
    Martínez A; Porras A; Pastor AR; Palomares LA; Ramírez OT
    Methods Mol Biol; 2024; 2829():237-246. PubMed ID: 38951339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCMV-Based Enzymatic Nanoreactors.
    de Ruiter MV; Putri RM; Cornelissen JJLM
    Methods Mol Biol; 2018; 1776():237-247. PubMed ID: 29869246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Virus-Like Particles for RNA Delivery.
    Ramirez-Acosta K; Loredo-García E; Herrera-Hernandez MM; Cadena-Nava RD
    Methods Mol Biol; 2024; 2822():387-410. PubMed ID: 38907930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids.
    Wu Y; Yang H; Shin HJ
    Biotechnol Lett; 2014 Mar; 36(3):515-21. PubMed ID: 24190479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled integration of polymers into viral capsids.
    Comellas-Aragonès M; de la Escosura A; Dirks AT; van der Ham A; Fusté-Cuñé A; Cornelissen JJ; Nolte RJ
    Biomacromolecules; 2009 Nov; 10(11):3141-7. PubMed ID: 19839603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly and Stabilization of Hybrid Cowpea Chlorotic Mottle Virus Particles under Nearly Physiological Conditions.
    Timmermans SBPE; Vervoort DFM; Schoonen L; Nolte RJM; van Hest JCM
    Chem Asian J; 2018 Nov; 13(22):3518-3525. PubMed ID: 29975459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic stability of salt stable cowpea chlorotic mottle virus capsid protein dimers and pentamers of dimers.
    Szoverfi J; Fejer SN
    Sci Rep; 2022 Aug; 12(1):14251. PubMed ID: 35995818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and efficient purification of Cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation.
    Ali A; Roossinck MJ
    J Virol Methods; 2007 Apr; 141(1):84-6. PubMed ID: 17188758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The disassembly, reassembly and stability of CCMV protein capsids.
    Lavelle L; Michel JP; Gingery M
    J Virol Methods; 2007 Dec; 146(1-2):311-6. PubMed ID: 17804089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatics in the assembly pathway of a single-stranded RNA virus.
    Garmann RF; Comas-Garcia M; Koay MS; Cornelissen JJ; Knobler CM; Gelbart WM
    J Virol; 2014 Sep; 88(18):10472-9. PubMed ID: 24965458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Ion-Induced Self-Assembly and Packaging of CCMV Nanocapsules.
    Schoonen L; van Eldijk MB; van Hest JCM
    Methods Mol Biol; 2018; 1798():57-67. PubMed ID: 29868951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of CCMV Nanocages for Enzyme Encapsulation.
    Schoonen L; van Hest JCM
    Methods Mol Biol; 2018; 1798():69-83. PubMed ID: 29868952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.