These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36992405)

  • 21. Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle.
    Mello AF; Clark AJ; Perry KL
    J Gen Virol; 2010 Feb; 91(Pt 2):545-51. PubMed ID: 19828763
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Karan S; DurĂ¡n-Meza AL; Chapman A; Tanimoto C; Chan SK; Knobler CM; Gelbart WM; Steinmetz NF
    Mol Pharm; 2024 Jun; 21(6):2727-2739. PubMed ID: 38709860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symptom induction by Cowpea chlorotic mottle virus on Vigna unguiculata is determined by amino acid residue 151 in the coat protein.
    de Assis Filho FM; Paguio OR; Sherwood JL; Deom CM
    J Gen Virol; 2002 Apr; 83(Pt 4):879-883. PubMed ID: 11907338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles.
    Garmann RF; Sportsman R; Beren C; Manoharan VN; Knobler CM; Gelbart WM
    J Am Chem Soc; 2015 Jun; 137(24):7584-7. PubMed ID: 26043403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions.
    Garmann RF; Comas-Garcia M; Gopal A; Knobler CM; Gelbart WM
    J Mol Biol; 2014 Mar; 426(5):1050-60. PubMed ID: 24148696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids.
    Aniagyei SE; Kennedy CJ; Stein B; Willits DA; Douglas T; Young MJ; De M; Rotello VM; Srisathiyanarayanan D; Kao CC; Dragnea B
    Nano Lett; 2009 Jan; 9(1):393-8. PubMed ID: 19090695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstituted plant viral capsids can release genes to mammalian cells.
    Azizgolshani O; Garmann RF; Cadena-Nava R; Knobler CM; Gelbart WM
    Virology; 2013 Jun; 441(1):12-7. PubMed ID: 23608360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein Cages as Containers for Gold Nanoparticles.
    Liu A; Verwegen M; de Ruiter MV; Maassen SJ; Traulsen CH; Cornelissen JJ
    J Phys Chem B; 2016 Jul; 120(26):6352-7. PubMed ID: 27135176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cowpea Chlorotic Mottle Virus-Like Particles as Potential Platform for Antisense Oligonucleotide Delivery in Posterior Segment Ocular Diseases.
    Pretto C; Tang M; Chen M; Xu H; Subrizi A; Urtti A; van Hest JCM
    Macromol Biosci; 2021 Aug; 21(8):e2100095. PubMed ID: 34031995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function.
    Brumfield S; Willits D; Tang L; Johnson JE; Douglas T; Young M
    J Gen Virol; 2004 Apr; 85(Pt 4):1049-1053. PubMed ID: 15039547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual Site-Selective Presentation of Functional Handles on Protein-Engineered Cowpea Chlorotic Mottle Virus-Like Particles.
    Vervoort DFM; Heiringhoff R; Timmermans SBPE; van Stevendaal MHME; van Hest JCM
    Bioconjug Chem; 2021 May; 32(5):958-963. PubMed ID: 33861931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction with capsid protein alters RNA structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus.
    Johnson JM; Willits DA; Young MJ; Zlotnick A
    J Mol Biol; 2004 Jan; 335(2):455-64. PubMed ID: 14672655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligonucleotide Length-Dependent Formation of Virus-Like Particles.
    Maassen SJ; de Ruiter MV; Lindhoud S; Cornelissen JJLM
    Chemistry; 2018 May; 24(29):7456-7463. PubMed ID: 29518273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All-atom multiscale simulation of cowpea chlorotic mottle virus capsid swelling.
    Miao Y; Johnson JE; Ortoleva PJ
    J Phys Chem B; 2010 Sep; 114(34):11181-95. PubMed ID: 20695471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA.
    Zhao X; Fox JM; Olson NH; Baker TS; Young MJ
    Virology; 1995 Mar; 207(2):486-94. PubMed ID: 7886952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cargo-loading of hybrid cowpea chlorotic mottle virus capsids via a co-expression approach.
    Timmermans SBPE; Mesman R; Blezer KJR; van Niftrik L; van Hest JCM
    Virology; 2022 Dec; 577():99-104. PubMed ID: 36335770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple technique for separation of Cowpea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections.
    Ali A; Roossinck MJ
    J Virol Methods; 2008 Nov; 153(2):163-7. PubMed ID: 18755217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles.
    Lam P; Steinmetz NF
    Biomater Sci; 2019 Aug; 7(8):3138-3142. PubMed ID: 31257379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrostatic properties of cowpea chlorotic mottle virus and cucumber mosaic virus capsids.
    Konecny R; Trylska J; Tama F; Zhang D; Baker NA; Brooks CL; McCammon JA
    Biopolymers; 2006 Jun; 82(2):106-20. PubMed ID: 16278831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.