These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 36992650)
1. Optimization of precision nanofiber micelleplexes for DNA delivery. Street STG; Parkin HC; Shopperly L; Chrenek J; Letwin K; Willerth SM; Manners I Biomater Sci; 2023 May; 11(10):3512-3523. PubMed ID: 36992650 [TBL] [Abstract][Full Text] [Related]
2. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. Street STG; Chrenek J; Harniman RL; Letwin K; Mantell JM; Borucu U; Willerth SM; Manners I J Am Chem Soc; 2022 Nov; 144(43):19799-19812. PubMed ID: 36260789 [TBL] [Abstract][Full Text] [Related]
3. Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes. Sharma R; Lee JS; Bettencourt RC; Xiao C; Konieczny SF; Won YY Biomacromolecules; 2008 Nov; 9(11):3294-307. PubMed ID: 18942877 [TBL] [Abstract][Full Text] [Related]
4. Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. Tan Z; Jiang Y; Zhang W; Karls L; Lodge TP; Reineke TM J Am Chem Soc; 2019 Oct; 141(40):15804-15817. PubMed ID: 31553590 [TBL] [Abstract][Full Text] [Related]
5. Influence of nano-carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: polyplexes vs micelleplexes. Gary DJ; Lee H; Sharma R; Lee JS; Kim Y; Cui ZY; Jia D; Bowman VD; Chipman PR; Wan L; Zou Y; Mao G; Park K; Herbert BS; Konieczny SF; Won YY ACS Nano; 2011 May; 5(5):3493-505. PubMed ID: 21456626 [TBL] [Abstract][Full Text] [Related]
9. Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host-Guest Pseudo-Block Copolymers. Zhang Z; Wen Y; Song X; Zhu J; Li J ACS Appl Bio Mater; 2021 Jun; 4(6):5057-5070. PubMed ID: 35007054 [TBL] [Abstract][Full Text] [Related]
10. Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection. Zhu C; Zheng M; Meng F; Mickler FM; Ruthardt N; Zhu X; Zhong Z Biomacromolecules; 2012 Mar; 13(3):769-78. PubMed ID: 22277017 [TBL] [Abstract][Full Text] [Related]
11. Steric stabilization of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. Verbaan FJ; Oussoren C; Snel CJ; Crommelin DJ; Hennink WE; Storm G J Gene Med; 2004 Jan; 6(1):64-75. PubMed ID: 14716678 [TBL] [Abstract][Full Text] [Related]
12. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery. Han S; Wan H; Lin D; Guo S; Dong H; Zhang J; Deng L; Liu R; Tang H; Dong A Acta Biomater; 2014 Feb; 10(2):670-9. PubMed ID: 24096149 [TBL] [Abstract][Full Text] [Related]
13. Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Dai F; Liu W Biomaterials; 2011 Jan; 32(2):628-38. PubMed ID: 20888634 [TBL] [Abstract][Full Text] [Related]
14. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Jiang X; Lok MC; Hennink WE Bioconjug Chem; 2007; 18(6):2077-84. PubMed ID: 17927133 [TBL] [Abstract][Full Text] [Related]
15. Application of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes for gene transfer into human ovarian carcinoma cells. Verbaan FJ; Klein Klouwenberg P; van Steenis JH; Snel CJ; Boerman O; Hennink WE; Storm G Int J Pharm; 2005 Nov; 304(1-2):185-92. PubMed ID: 16129577 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Effect of PEI and PDMAEMA on Transgene Expression in Vitro. Lo CW; Liao WH; Wu CH; Lee JL; Sun MK; Yang HS; Tsai WB; Chang Y; Chen WS Langmuir; 2015 Jun; 31(22):6130-6. PubMed ID: 25985827 [TBL] [Abstract][Full Text] [Related]
17. Combination of Poly[(2-dimethylamino)ethyl methacrylate] and Poly(β-amino ester) Results in a Strong and Synergistic Transfection Activity. Santo D; Cordeiro RA; Sousa A; Serra A; Coelho JFJ; Faneca H Biomacromolecules; 2017 Oct; 18(10):3331-3342. PubMed ID: 28858523 [TBL] [Abstract][Full Text] [Related]
18. Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Chen M; Zhang Y; Chen Z; Xie S; Luo X; Li X Acta Biomater; 2017 Feb; 49():444-455. PubMed ID: 27940163 [TBL] [Abstract][Full Text] [Related]
19. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. Pereira-Silva M; Jarak I; Santos AC; Veiga F; Figueiras A Eur J Pharm Sci; 2020 Oct; 153():105461. PubMed ID: 32653564 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of transfection efficiency through rapid and noncovalent post-PEGylation of poly(dimethylaminoethyl methacrylate)/DNA complexes. Pirotton S; Muller C; Pantoustier N; Botteman F; Collinet S; Grandfils C; Dandrifosse G; Degée P; Dubois P; Raes M Pharm Res; 2004 Aug; 21(8):1471-9. PubMed ID: 15359584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]