These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36992694)

  • 1. Toward reliable calcification detection: calibration of uncertainty in object detection from coronary optical coherence tomography images.
    Liu H; Li X; Bamba AL; Song X; Brott BC; Litovsky SH; Gan Y
    J Biomed Opt; 2023 Mar; 28(3):036008. PubMed ID: 36992694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of coronary calcifications in optical coherence tomography imaging using deep learning.
    Avital Y; Madar A; Arnon S; Koifman E
    Sci Rep; 2021 May; 11(1):11269. PubMed ID: 34050203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histopathological validation of optical frequency domain imaging to quantify various types of coronary calcifications.
    Saita T; Fujii K; Hao H; Imanaka T; Shibuya M; Fukunaga M; Miki K; Tamaru H; Horimatsu T; Nishimura M; Sumiyoshi A; Kawakami R; Naito Y; Kajimoto N; Hirota S; Masuyama T
    Eur Heart J Cardiovasc Imaging; 2017 Mar; 18(3):342-349. PubMed ID: 27076364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of morphological assessment of coronary artery calcification with electrocardiography-gated non-contrast computed tomography: a comparative study with optical coherence tomography.
    Takahashi Y; Toba T; Otake H; Fukuyama Y; Nakano S; Matsuoka Y; Tanimura K; Izawa Y; Kawamori H; Kono AK; Fujiwara S; Hirata KI
    Int J Cardiovasc Imaging; 2021 Apr; 37(4):1445-1453. PubMed ID: 33151511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography.
    Precht H; Broersen A; Kitslaar PH; Dijkstra J; Gerke O; Thygesen J; Egstrup K; Leth PM; Hardt-Madsen M; Nielsen B; Falk E; Lambrechtsen J
    Cardiovasc Pathol; 2019; 39():25-29. PubMed ID: 30597423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images.
    Liu R; Zhang Y; Zheng Y; Liu Y; Zhao Y; Yi L
    Cardiovasc Eng Technol; 2019 Dec; 10(4):590-603. PubMed ID: 31535296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence, Predictors, and Clinical Presentation of a Calcified Nodule as Assessed by Optical Coherence Tomography.
    Lee T; Mintz GS; Matsumura M; Zhang W; Cao Y; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):883-891. PubMed ID: 28797410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the coronary calcification by optical coherence tomography.
    Kume T; Okura H; Kawamoto T; Yamada R; Miyamoto Y; Hayashida A; Watanabe N; Neishi Y; Sadahira Y; Akasaka T; Yoshida K
    EuroIntervention; 2011 Jan; 6(6):768-72. PubMed ID: 21205603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation.
    Sugawara Y; Ueda T; Soeda T; Watanabe M; Okura H; Saito Y
    Cardiovasc Interv Ther; 2019 Jul; 34(3):242-248. PubMed ID: 30341585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrastive uncertainty based biomarkers detection in retinal optical coherence tomography images.
    Liu X; Zhou K; Yao J; Wang M; Zhang Y
    Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36384040
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantification of calcium burden by coronary CT angiography compared to optical coherence tomography.
    Monizzi G; Sonck J; Nagumo S; Buytaert D; Van Hoe L; Grancini L; Bartorelli AL; Vanhoenacker P; Simons P; Bladt O; Wyffels E; De Bruyne B; Andreini D; Collet C
    Int J Cardiovasc Imaging; 2020 Dec; 36(12):2393-2402. PubMed ID: 33205340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.
    Pociask E; Malinowski KP; Ślęzak M; Jaworek-Korjakowska J; Wojakowski W; Roleder T
    J Healthc Eng; 2018; 2018():1414076. PubMed ID: 30792831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography.
    Wang X; Matsumura M; Mintz GS; Lee T; Zhang W; Cao Y; Fujino A; Lin Y; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):869-879. PubMed ID: 28797408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.
    Ughi GJ; Verjans J; Fard AM; Wang H; Osborn E; Hara T; Mauskapf A; Jaffer FA; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):259-68. PubMed ID: 25341407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty aware training to improve deep learning model calibration for classification of cardiac MR images.
    Dawood T; Chen C; Sidhu BS; Ruijsink B; Gould J; Porter B; Elliott MK; Mehta V; Rinaldi CA; Puyol-Antón E; Razavi R; King AP
    Med Image Anal; 2023 Aug; 88():102861. PubMed ID: 37327613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associations between the Framingham Risk Score and coronary plaque characteristics as assessed by three-vessel optical coherence tomography.
    Vergallo R; Xing L; Minami Y; Soeda T; Ong DS; Gao L; Lee H; Guagliumi G; Biasucci LM; Crea F; Yu B; Uemura S; O'Donnell CJ; Jang IK
    Coron Artery Dis; 2016 Sep; 27(6):460-6. PubMed ID: 27218146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions: First Description.
    Ali ZA; Brinton TJ; Hill JM; Maehara A; Matsumura M; Karimi Galougahi K; Illindala U; Götberg M; Whitbourn R; Van Mieghem N; Meredith IT; Di Mario C; Fajadet J
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):897-906. PubMed ID: 28797412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial Assessment of Tissue Precursors and Progression of Coronary Calcification Analyzed by Fusion of IVUS and OCT: 5-Year Follow-Up of Scaffolded and Nonscaffolded Arteries.
    Zeng Y; Tateishi H; Cavalcante R; Tenekecioglu E; Suwannasom P; Sotomi Y; Collet C; Nie S; Jonker H; Dijkstra J; Radu MD; Räber L; McClean DR; van Geuns RJ; Christiansen EH; Fahrni T; Koolen J; Onuma Y; Bruining N; Serruys PW
    JACC Cardiovasc Imaging; 2017 Oct; 10(10 Pt A):1151-1161. PubMed ID: 28330651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary study of the significance of reverberation by IVUS detection for patients with severe calcified lesions.
    You W; Zhang HL; Xu T; Meng PN; Zhou YH; Wu XQ; Wu ZM; Tao B; Guo YJ; Nong JC; Ye F
    Int J Cardiovasc Imaging; 2023 Mar; 39(3):667-676. PubMed ID: 36609638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Very small calcifications are detected and scored in the coronary arteries from small voxel MDCT images using a new automated/calibrated scoring method with statistical and patient specific plaque definitions.
    Arnold BA; Xiang P; Budoff MJ; Mao SS
    Int J Cardiovasc Imaging; 2012 Jun; 28(5):1193-204. PubMed ID: 21706147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.