These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 36992900)
21. Comprehensive analysis of aberrantly expressed profiles of mRNA and its relationship with serum galactose-deficient IgA1 level in IgA nephropathy. Liu Y; Liu X; Jia J; Zheng J; Yan T J Transl Med; 2019 Sep; 17(1):320. PubMed ID: 31547815 [TBL] [Abstract][Full Text] [Related]
22. Zhao J; Zhang F; Xiao X; Wu Z; Hu Q; Jiang Y; Zhang W; Wei S; Ma X; Zhang X Front Pharmacol; 2021; 12():715359. PubMed ID: 34887747 [No Abstract] [Full Text] [Related]
23. Inhibition of activated human mesangial cell proliferation by the natural product of Cordyceps sinensis (H1-A): an implication for treatment of IgA mesangial nephropathy. Lin CY; Ku FM; Kuo YC; Chen CF; Chen WP; Chen A; Shiao MS J Lab Clin Med; 1999 Jan; 133(1):55-63. PubMed ID: 10385482 [TBL] [Abstract][Full Text] [Related]
24. Long noncoding RNA FGD5-AS1 alleviates childhood IgA nephropathy by targeting PTEN-mediated JNK/c-Jun signaling pathway via miR-196b-5p. Sun Q; Liu X; Wang M; Fan J; Zeng H Exp Cell Res; 2023 Mar; 424(1):113481. PubMed ID: 36641136 [TBL] [Abstract][Full Text] [Related]
25. Prevention of acute GVHD in mice by treatment with Tripterygium hypoglaucum Hutch combined with cyclosporin A. Li ZY; Wu Q; Yan Z; Li D; Pan X; Qiu T; Xu K Hematology; 2013 Nov; 18(6):352-9. PubMed ID: 23432920 [TBL] [Abstract][Full Text] [Related]
26. Mechanism of action of Shi H; Hou Y; Su X; Qiao J; Wang Q; Guo X; Gao Z; Wang L Ren Fail; 2022 Dec; 44(1):116-125. PubMed ID: 35172688 [TBL] [Abstract][Full Text] [Related]
27. Jixuecao (Herba Centellae Asiaticae) alleviates mesangial cell proliferation in IgA nephropathy by inducing mitofusin 2 expression. Chen H; Du Y; Li Y; Zeng J; Miao J; Jiang X J Tradit Chin Med; 2019 Jun; 39(3):346-355. PubMed ID: 32186007 [TBL] [Abstract][Full Text] [Related]
28. Dihydroartemisinin inhibits the proliferation of IgAN mesangial cells through the mTOR signaling pathway. Xia M; Liu D; Tang X; Liu Y; Liu H; Liu Y; Chen G; Liu H Int Immunopharmacol; 2020 Mar; 80():106125. PubMed ID: 31931362 [TBL] [Abstract][Full Text] [Related]
29. EIF2α/ATF4 pathway enhances proliferation of mesangial cell via cyclin D1 during endoplasmic reticulum stress in IgA nephropathy. Lan Z; Zhao L; Peng L; Wan L; Liu D; Tang C; Chen G; Liu Y; Liu H Clin Immunol; 2023 Dec; 257():109840. PubMed ID: 37939913 [TBL] [Abstract][Full Text] [Related]
30. Mechanism for the therapeutic effect of Zhao J; Liu H Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 May; 47(5):573-582. PubMed ID: 35753727 [TBL] [Abstract][Full Text] [Related]
31. Transferrin receptor engagement by polymeric IgA1 induces receptor expression and mesangial cell proliferation: role in IgA nephropathy. Tamouza H; Vende F; Tiwari M; Arcos-Fajardo M; Vrtovsnik F; Benhamou M; Monteiro RC; Moura IC Contrib Nephrol; 2007; 157():144-7. PubMed ID: 17495453 [TBL] [Abstract][Full Text] [Related]
32. Increased binding of polymeric lambda-IgA to cultured human mesangial cells in IgA nephropathy. Lai KN; To WY; Li PK; Leung JC Kidney Int; 1996 Mar; 49(3):839-45. PubMed ID: 8648928 [TBL] [Abstract][Full Text] [Related]
33. Identification of molecular mechanisms underlying the therapeutic effects of Celosia Cristata on immunoglobulin nephropathy. Rehman A; Noor F; Fatima I; Qasim M; Liao M Comput Biol Med; 2022 Dec; 151(Pt A):106290. PubMed ID: 36379189 [TBL] [Abstract][Full Text] [Related]
34. Combining bioinformatics, network pharmacology and artificial intelligence to predict the mechanism of celastrol in the treatment of type 2 diabetes. Wu M; Zhang Y Front Endocrinol (Lausanne); 2022; 13():1030278. PubMed ID: 36339449 [TBL] [Abstract][Full Text] [Related]
35. Tripterygium wilfordii protects against an animal model of autoimmune hepatitis. Zhang T; Rao Q; Dai M; Wu ZE; Zhao Q; Li F J Ethnopharmacol; 2023 Jun; 309():116365. PubMed ID: 36907478 [TBL] [Abstract][Full Text] [Related]
36. [Experimental study of Tripterygium hypoglaucum (level) Hutch on preventing acute graft-versus-host disease in bone marrow transplantation mice]. Li S; Xu KL; Li ZY; Pan XY; Sun HY; Li DP; Cao J; Du B Zhonghua Xue Ye Xue Za Zhi; 2007 Nov; 28(11):727-30. PubMed ID: 18457261 [TBL] [Abstract][Full Text] [Related]
37. Identification of a cytochrome P450 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzes polpunonic acid formation in celastrol biosynthesis. Chen XC; Lu Y; Liu Y; Zhou JW; Zhang YF; Gao HY; Li D; Gao W Chin J Nat Med; 2022 Sep; 20(9):691-700. PubMed ID: 36162954 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of Lu L; Peng J; Wan P; Peng H; Lu J; Xiong G Front Pharmacol; 2022; 13():940773. PubMed ID: 36386135 [No Abstract] [Full Text] [Related]
39. [Serum IgA(1) from patients with IgA nephropathy induces phosphorylation of extracellular signal-regulated kinase and proliferation of human mesangial cells]. Wang Y; Zhao M; Zhang Y; Li X; Wang H Zhonghua Yi Xue Za Zhi; 2002 Oct; 82(20):1406-9. PubMed ID: 12509924 [TBL] [Abstract][Full Text] [Related]
40. Integrated Network Pharmacology Analysis and Experimental Validation to Investigate the Molecular Mechanism of Triptolide in the Treatment of Membranous Nephropathy. Zhang PN; Tang JY; Yang KZ; Zheng QY; Dong ZC; Geng YL; Liu YN; Liu WJ Drug Des Devel Ther; 2022; 16():4061-4076. PubMed ID: 36448035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]