These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 36992900)
61. Tripterygium hypoglaucum extract ameliorates adjuvant-induced arthritis in mice through the gut microbiota. Hu J; Ni J; Zheng J; Guo Y; Yang Y; Ye C; Sun X; Xia H; Liu Y; Liu H Chin J Nat Med; 2023 Oct; 21(10):730-744. PubMed ID: 37879792 [TBL] [Abstract][Full Text] [Related]
62. Mesangial expression of angiotensin II receptor in IgA nephropathy and its regulation by polymeric IgA1. Lai KN; Chan LY; Tang SC; Tsang AW; Li FF; Lam MF; Lui SL; Leung JC Kidney Int; 2004 Oct; 66(4):1403-16. PubMed ID: 15458433 [TBL] [Abstract][Full Text] [Related]
63. Tonsillitis exacerbates renal injury in IgA nephropathy through promoting Th22 cells chemotaxis. Gan L; Zhu M; Li X; Chen C; Meng T; Pu J; Luo H; Shao F; Zhou Q Int Urol Nephrol; 2018 Jul; 50(7):1285-1292. PubMed ID: 29549623 [TBL] [Abstract][Full Text] [Related]
64. Meta-analysis of Tripterygium wilfordii Hook F in the immunosuppressive treatment of IgA nephropathy. Chen YZ; Gao Q; Zhao XZ; Chen XM; Zhang F; Chen J; Xu CG; Sun LL; Mei CL Intern Med; 2010; 49(19):2049-55. PubMed ID: 20930429 [TBL] [Abstract][Full Text] [Related]
65. Serum Levels of Joining Chain-Containing IgA1 Are Not Elevated in Patients with IgA Nephropathy. Li G; Wang X; Yang Z; Zhao Q; Wen Y; Li X; Gao R Dis Markers; 2019; 2019():9802839. PubMed ID: 31354895 [TBL] [Abstract][Full Text] [Related]
66. Bacterial IgA protease-mediated degradation of agIgA1 and agIgA1 immune complexes as a potential therapy for IgA Nephropathy. Wang L; Li X; Shen H; Mao N; Wang H; Cui L; Cheng Y; Fan J Sci Rep; 2016 Aug; 6():30964. PubMed ID: 27485391 [TBL] [Abstract][Full Text] [Related]
67. Transmembrane signaling molecules play a key role in the pathogenesis of IgA nephropathy: a weighted gene co-expression network analysis study. Gholaminejad A; Roointan A; Gheisari Y BMC Immunol; 2021 Dec; 22(1):73. PubMed ID: 34861820 [TBL] [Abstract][Full Text] [Related]
68. Celastrol targets the ChREBP-TXNIP axis to ameliorates type 2 diabetes mellitus. Zhou D; Li X; Xiao X; Wang G; Chen B; Song Y; Liu X; He Q; Zhang H; Wu Q; Zhang L; Wu L; Shen Z; Hassan M; Zhao Y; Zhou W Phytomedicine; 2023 Feb; 110():154634. PubMed ID: 36603341 [TBL] [Abstract][Full Text] [Related]
69. [Induction of non-disjunction of chromosome 8 by Tripterygium hypoglaucum (Lévl.) Hutch in mouse sperm]. Wang XY; Ding YR; Wang X Yi Chuan Xue Bao; 2002; 29(3):217-20. PubMed ID: 12182074 [TBL] [Abstract][Full Text] [Related]
70. In vitro porcine brain tubulin assembly inhibition by water extract from a Chinese medicinal herb, Tripterygium hypoglaucum Hutch. Liang ZQ; Cao N; Song ZK; Wang X World J Gastroenterol; 2006 Feb; 12(7):1133-5. PubMed ID: 16534859 [TBL] [Abstract][Full Text] [Related]
71. Identification of Hub Genes and Therapeutic Agents for IgA Nephropathy Through Bioinformatics Analysis and Experimental Validation. Xia M; Liu D; Liu H; Peng L; Yang D; Tang C; Chen G; Liu Y; Liu H Front Med (Lausanne); 2022; 9():881322. PubMed ID: 35836957 [TBL] [Abstract][Full Text] [Related]
72. Charge-dependent binding of polymeric IgA1 to human mesangial cells in IgA nephropathy. Leung JC; Tang SC; Lam MF; Chan TM; Lai KN Kidney Int; 2001 Jan; 59(1):277-85. PubMed ID: 11135081 [TBL] [Abstract][Full Text] [Related]
73. Activation of tubular epithelial cells by mesangial-derived TNF-alpha: glomerulotubular communication in IgA nephropathy. Chan LY; Leung JC; Tsang AW; Tang SC; Lai KN Kidney Int; 2005 Feb; 67(2):602-12. PubMed ID: 15673307 [TBL] [Abstract][Full Text] [Related]
74. Histone deacetylase inhibitors attenuate P-aIgA1-induced cell proliferation and extracellular matrix synthesis in human renal mesangial cells in vitro. Dai Q; Liu J; Du YL; Hao X; Ying J; Tan Y; He LQ; Wang WM; Chen N Acta Pharmacol Sin; 2016 Feb; 37(2):228-34. PubMed ID: 26775659 [TBL] [Abstract][Full Text] [Related]
75. Biomarkers and targeted new therapies for IgA nephropathy. Coppo R Pediatr Nephrol; 2017 May; 32(5):725-731. PubMed ID: 27324471 [TBL] [Abstract][Full Text] [Related]
76. Screening of major hepatotoxic components of Tripterygium wilfordii based on hepatotoxic injury patterns. Li M; Luo Q; Chen X; Qiu F; Tao Y; Sun X; Liu C BMC Complement Med Ther; 2023 Jan; 23(1):9. PubMed ID: 36627617 [TBL] [Abstract][Full Text] [Related]
77. Efficacy of Tripterygium hypoglaucum Hutch in adults with chronic urticaria. Zhong J; Xian D; Xu Y; Liu J J Altern Complement Med; 2011 May; 17(5):459-64. PubMed ID: 21568746 [TBL] [Abstract][Full Text] [Related]
78. Comparative transcriptomics and network pharmacology analysis to identify the potential mechanism of celastrol against osteoarthritis. Dai S; Wang H; Wang M; Zhang Y; Zhang Z; Lin Z Clin Rheumatol; 2021 Oct; 40(10):4259-4268. PubMed ID: 33870466 [TBL] [Abstract][Full Text] [Related]
79. Potential shared therapeutic and hepatotoxic mechanisms of Tripterygium wilfordii polyglycosides treating three kinds of autoimmune skin diseases by regulating IL-17 signaling pathway and Th17 cell differentiation. Chen Y; Wang YF; Song SS; Zhu J; Wu LL; Li XY J Ethnopharmacol; 2022 Oct; 296():115496. PubMed ID: 35750104 [TBL] [Abstract][Full Text] [Related]
80. Tripterygium Wilfordii inhibits tonsillar IgA production by downregulating IgA class switching in IgA nephropathy. Li H; Kong D; Xu Y; Li X; Yao G; Chen K; You Q; Shi Q; Zhang L; Wang X; Yuan D; Miao S; Geng J; Jin X; Meng H Oncotarget; 2017 Dec; 8(65):109027-109042. PubMed ID: 29312588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]