These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36993234)

  • 1. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination.
    Gulkis M; Tang Q; Petrides M; Çağlayan M
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination.
    Gulkis M; Tang Q; Petrides M; Çağlayan M
    Res Sq; 2023 Apr; ():. PubMed ID: 37090517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of LIG1 provide a mechanistic basis for understanding a lack of sugar discrimination against a ribonucleotide at the 3'-end of nick DNA.
    Balu KE; Gulkis M; Almohdar D; Çağlayan M
    J Biol Chem; 2024 May; 300(5):107216. PubMed ID: 38522520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair.
    Balu KE; Almohdar D; Ratcliffe J; Tang Q; Parwal T; Çağlayan M
    bioRxiv; 2024 May; ():. PubMed ID: 38766188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair.
    Tang Q; Gulkis M; McKenna R; Çağlayan M
    Nat Commun; 2022 Jul; 13(1):3860. PubMed ID: 35790757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of LIG1 uncover the mechanism of sugar discrimination against 5'-RNA-DNA junctions during ribonucleotide excision repair.
    Balu KE; Tang Q; Almohdar D; Ratcliffe J; Kalaycioğlu M; Çağlayan M
    J Biol Chem; 2024 Aug; 300(9):107688. PubMed ID: 39159820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA ligase I variants fail in the ligation of mutagenic repair intermediates with mismatches and oxidative DNA damage.
    Tang Q; Kamble P; Çağlayan M
    Mutagenesis; 2020 Dec; 35(5):391-404. PubMed ID: 32914844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-tiered enforcement of high-fidelity DNA ligation.
    Tumbale PP; Jurkiw TJ; Schellenberg MJ; Riccio AA; O'Brien PJ; Williams RS
    Nat Commun; 2019 Nov; 10(1):5431. PubMed ID: 31780661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway.
    Gulkis M; Martinez E; Almohdar D; Çağlayan M
    Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering nick DNA binding by LIG1 at the single-molecule level.
    Chatterjee S; Chaubet L; van den Berg A; Mukhortava A; Gulkis M; Çağlayan M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38586032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway.
    Almohdar D; Kamble P; Basavannacharya C; Gulkis M; Calbay O; Huang S; Narayan S; Çağlayan M
    Mutagenesis; 2024 May; ():. PubMed ID: 38736258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency.
    Taylor MR; Conrad JA; Wahl D; O'Brien PJ
    J Biol Chem; 2011 Jul; 286(26):23054-62. PubMed ID: 21561855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.
    Arakawa H; Iliakis G
    Genes (Basel); 2015 Jun; 6(2):385-98. PubMed ID: 26110316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Severe Combined Immunodeficiency from a Homozygous DNA Ligase 1 Mutant with Reduced Catalytic Activity but Increased Ligation Fidelity.
    Alajlan H; Raducanu VS; Lopez de Los Santos Y; Tehseen M; Alruwaili H; Al-Mazrou A; Mohammad R; Al-Alwan M; De Biasio A; Merzaban JS; Al-Mousa H; Hamdan SM; Alazami AM
    J Clin Immunol; 2024 Jun; 44(7):151. PubMed ID: 38896336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency.
    Jurkiw TJ; Tumbale PP; Schellenberg MJ; Cunningham-Rundles C; Williams RS; O'Brien PJ
    Nucleic Acids Res; 2021 Feb; 49(3):1619-1630. PubMed ID: 33444456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates.
    Çağlayan M
    Nucleic Acids Res; 2020 Apr; 48(7):3708-3721. PubMed ID: 32140717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I.
    McNally JR; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(38):15870-15879. PubMed ID: 28751376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus.
    Tong J; Barany F; Cao W
    Nucleic Acids Res; 2000 Mar; 28(6):1447-54. PubMed ID: 10684941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nick sensing by vaccinia virus DNA ligase requires a 5' phosphate at the nick and occupancy of the adenylate binding site on the enzyme.
    Sekiguchi J; Shuman S
    J Virol; 1997 Dec; 71(12):9679-84. PubMed ID: 9371633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.