These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 36993370)

  • 1. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome.
    Venkatraman K; Lee CT; Garcia GC; Mahapatra A; Milshteyn D; Perkins G; Kim KY; Pasolli HA; Phan S; Lippincott-Schwartz J; Ellisman MH; Rangamani P; Budin I
    bioRxiv; 2023 Sep; ():. PubMed ID: 36993370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome.
    Venkatraman K; Lee CT; Garcia GC; Mahapatra A; Milshteyn D; Perkins G; Kim KY; Pasolli HA; Phan S; Lippincott-Schwartz J; Ellisman MH; Rangamani P; Budin I
    EMBO J; 2023 Dec; 42(24):e114054. PubMed ID: 37933600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease.
    Gasanoff ES; Yaguzhinsky LS; Garab G
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How rotating ATP synthases can modulate membrane structure.
    Almendro-Vedia V; Natale P; Valdivieso González D; Lillo MP; Aragones JL; López-Montero I
    Arch Biochem Biophys; 2021 Sep; 708():108939. PubMed ID: 34052190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and Phospholipid Enrichment of Muscle Mitochondria and Mitoplasts.
    Prola A; Vandestienne A; Baroudi N; Joubert F; Tiret L; Pilot-Storck F
    Bio Protoc; 2021 Oct; 11(20):e4201. PubMed ID: 34761073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.
    Gasanov SE; Kim AA; Yaguzhinsky LS; Dagda RK
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):586-599. PubMed ID: 29179995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of local pH on the formation and regulation of cristae morphologies.
    Song DH; Park J; Philbert MA; Sastry AM; Lu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022702. PubMed ID: 25215753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.
    Plecitá-Hlavatá L; Engstová H; Alán L; Špaček T; Dlasková A; Smolková K; Špačková J; Tauber J; Strádalová V; Malínský J; Lessard M; Bewersdorf J; Ježek P
    FASEB J; 2016 May; 30(5):1941-57. PubMed ID: 26887443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ATP synthase is involved in generating mitochondrial cristae morphology.
    Paumard P; Vaillier J; Coulary B; Schaeffer J; Soubannier V; Mueller DM; Brèthes D; di Rago JP; Velours J
    EMBO J; 2002 Feb; 21(3):221-30. PubMed ID: 11823415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae.
    Davies KM; Anselmi C; Wittig I; Faraldo-Gómez JD; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13602-7. PubMed ID: 22864911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiolipin and mitochondrial cristae organization.
    Ikon N; Ryan RO
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1156-1163. PubMed ID: 28336315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Contact Site and Cristae Organization System and F
    Cadena LR; Gahura O; Panicucci B; Zíková A; Hashimi H
    mSphere; 2021 Jun; 6(3):e0032721. PubMed ID: 34133204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force.
    Anselmi C; Davies KM; Faraldo-Gómez JD
    J Gen Physiol; 2018 May; 150(5):763-770. PubMed ID: 29643173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid packing variations induced by pH in cardiolipin-containing bilayers: the driving force for the cristae-like shape instability.
    Khalifat N; Fournier JB; Angelova MI; Puff N
    Biochim Biophys Acta; 2011 Nov; 1808(11):2724-33. PubMed ID: 21803023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of Cardiolipin and Crista Structure Requires Cooperative Functions of Mitochondrial Dynamics and Phospholipid Transport.
    Kojima R; Kakimoto Y; Furuta S; Itoh K; Sesaki H; Endo T; Tamura Y
    Cell Rep; 2019 Jan; 26(3):518-528.e6. PubMed ID: 30650346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina.
    Warnsmann V; Marschall LM; Meeßen AC; Wolters M; Schürmanns L; Basoglu M; Eimer S; Osiewacz HD
    J Cell Biochem; 2022 Aug; 123(8):1306-1326. PubMed ID: 35616269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible and irreversible mitochondrial swelling in vitro.
    Khmelinskii I; Makarov V
    Biophys Chem; 2021 Nov; 278():106668. PubMed ID: 34418677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways shaping the mitochondrial inner membrane.
    Klecker T; Westermann B
    Open Biol; 2021 Dec; 11(12):210238. PubMed ID: 34847778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes.
    Ott C; Ross K; Straub S; Thiede B; Götz M; Goosmann C; Krischke M; Mueller MJ; Krohne G; Rudel T; Kozjak-Pavlovic V
    Mol Cell Biol; 2012 Mar; 32(6):1173-88. PubMed ID: 22252321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants, and implications, of the shape and size of thylakoids and cristae.
    Raven JA
    J Plant Physiol; 2021 Feb; 257():153342. PubMed ID: 33385618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.