BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36993420)

  • 1. Visualization of translation reorganization upon persistent collision stress in mammalian cells.
    Fedry J; Silva J; Vanevic M; Fronik S; Mechulam Y; Schmitt E; des Georges A; Faller W; Förster F
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of translation reorganization upon persistent ribosome collision stress in mammalian cells.
    Fedry J; Silva J; Vanevic M; Fronik S; Mechulam Y; Schmitt E; des Georges A; Faller WJ; Förster F
    Mol Cell; 2024 Mar; 84(6):1078-1089.e4. PubMed ID: 38340715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Solitary Stalled 80S Ribosome Prevents mRNA Recruitment to Stress Granules.
    Fedorovskiy AG; Burakov AV; Terenin IM; Bykov DA; Lashkevich KA; Popenko VI; Makarova NE; Sorokin II; Sukhinina AP; Prassolov VS; Ivanov PV; Dmitriev SE
    Biochemistry (Mosc); 2023 Nov; 88(11):1786-1799. PubMed ID: 38105199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for clearing of ribosome collisions by the RQT complex.
    Best K; Ikeuchi K; Kater L; Best D; Musial J; Matsuo Y; Berninghausen O; Becker T; Inada T; Beckmann R
    Nat Commun; 2023 Feb; 14(1):921. PubMed ID: 36801861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZNF598 Is a Quality Control Sensor of Collided Ribosomes.
    Juszkiewicz S; Chandrasekaran V; Lin Z; Kraatz S; Ramakrishnan V; Hegde RS
    Mol Cell; 2018 Nov; 72(3):469-481.e7. PubMed ID: 30293783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Gcn1 bound to stalled and colliding 80S ribosomes.
    Pochopien AA; Beckert B; Kasvandik S; Berninghausen O; Beckmann R; Tenson T; Wilson DN
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing of individual stalled 80S ribosomes by Fap1 for nonfunctional rRNA turnover.
    Li S; Ikeuchi K; Kato M; Buschauer R; Sugiyama T; Adachi S; Kusano H; Natsume T; Berninghausen O; Matsuo Y; Becker T; Beckmann R; Inada T
    Mol Cell; 2022 Sep; 82(18):3424-3437.e8. PubMed ID: 36113412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ribosome Assembly Factor Reh1 is Released from the Polypeptide Exit Tunnel in the Pioneer Round of Translation.
    Musalgaonkar S; Yelland J; Chitale R; Rao S; Ozadam H; Cenik C; Taylor D; Johnson A
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress.
    Zhou Y; Kastritis PL; Dougherty SE; Bouvette J; Hsu AL; Burbaum L; Mosalaganti S; Pfeffer S; Hagen WJH; Förster F; Borgnia MJ; Vogel C; Beck M; Bartesaghi A; Silva GM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22157-22166. PubMed ID: 32855298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
    Zhao T; Chen YM; Li Y; Wang J; Chen S; Gao N; Qian W
    Genome Biol; 2021 Jan; 22(1):16. PubMed ID: 33402206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Run, Ribosome, Run: From Compromised Translation to Human Health.
    Vind AC; Snieckute G; Bekker-Jensen S; Blasius M
    Antioxid Redox Signal; 2023 Aug; 39(4-6):336-350. PubMed ID: 36825529
    [No Abstract]   [Full Text] [Related]  

  • 12. In vitro Analysis of Stalled Ribosomes Using Puromycin Incorporation.
    Scarpitti MR; Kearse MG
    Bio Protoc; 2023 Aug; 13(16):e4744. PubMed ID: 37638299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteostasis regulation through ribosome quality control and no-go-decay.
    Alagar Boopathy LR; Beadle E; Garcia-Bueno Rico A; Vera M
    Wiley Interdiscip Rev RNA; 2023; 14(6):e1809. PubMed ID: 37488089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome profiling reveals ribosome stalling on tryptophan codons and ribosome queuing upon oxidative stress in fission yeast.
    Rubio A; Ghosh S; Mülleder M; Ralser M; Mata J
    Nucleic Acids Res; 2021 Jan; 49(1):383-399. PubMed ID: 33313903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a Negative Cooperativity between eIF5A and eEF2 on Binding to the Ribosome.
    Rossi D; Barbosa NM; Galvão FC; Boldrin PE; Hershey JW; Zanelli CF; Fraser CS; Valentini SR
    PLoS One; 2016; 11(4):e0154205. PubMed ID: 27115996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria.
    Ferrin MA; Subramaniam AR
    Elife; 2017 May; 6():. PubMed ID: 28498106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The landscape of translational stall sites in bacteria revealed by monosome and disome profiling.
    Fujita T; Yokoyama T; Shirouzu M; Taguchi H; Ito T; Iwasaki S
    RNA; 2022 Mar; 28(3):290-302. PubMed ID: 34906996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Translation-coupled Quality Control.
    Inada T; Beckmann R
    J Mol Biol; 2024 Mar; 436(6):168496. PubMed ID: 38365086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frameshifting at collided ribosomes is modulated by elongation factor eEF3 and by integrated stress response regulators Gcn1 and Gcn20.
    Houston L; Platten EM; Connelly SM; Wang J; Grayhack EJ
    RNA; 2022 Mar; 28(3):320-339. PubMed ID: 34916334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation.
    Heuer A; Gerovac M; Schmidt C; Trowitzsch S; Preis A; Kötter P; Berninghausen O; Becker T; Beckmann R; Tampé R
    Nat Struct Mol Biol; 2017 May; 24(5):453-460. PubMed ID: 28368393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.