These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 36993457)
1. An evaluation of statistical differential analysis methods in single-cell RNA-seq data. Li D; Zand M; Dye T; Goniewicz M; Rahman I; Xie Z Res Sq; 2023 Mar; ():. PubMed ID: 36993457 [TBL] [Abstract][Full Text] [Related]
2. An evaluation of RNA-seq differential analysis methods. Li D; Zand MS; Dye TD; Goniewicz ML; Rahman I; Xie Z PLoS One; 2022; 17(9):e0264246. PubMed ID: 36112652 [TBL] [Abstract][Full Text] [Related]
3. Reproducibility of Methods to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing. Mou T; Deng W; Gu F; Pawitan Y; Vu TN Front Genet; 2019; 10():1331. PubMed ID: 32010190 [TBL] [Abstract][Full Text] [Related]
4. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Miao Z; Deng K; Wang X; Zhang X Bioinformatics; 2018 Sep; 34(18):3223-3224. PubMed ID: 29688277 [TBL] [Abstract][Full Text] [Related]
5. lncDIFF: a novel quasi-likelihood method for differential expression analysis of non-coding RNA. Li Q; Yu X; Chaudhary R; Slebos RJC; Chung CH; Wang X BMC Genomics; 2019 Jul; 20(1):539. PubMed ID: 31266446 [TBL] [Abstract][Full Text] [Related]
6. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data. Zhou L; Pan Q Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443 [TBL] [Abstract][Full Text] [Related]
7. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. Li X; Cooper NGF; O'Toole TE; Rouchka EC BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223 [TBL] [Abstract][Full Text] [Related]
8. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Yip SH; Wang P; Kocher JA; Sham PC; Wang J Nucleic Acids Res; 2017 Dec; 45(22):e179. PubMed ID: 28981748 [TBL] [Abstract][Full Text] [Related]
9. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823 [TBL] [Abstract][Full Text] [Related]
10. Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2. Liu S; Wang Z; Zhu R; Wang F; Cheng Y; Liu Y J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605806 [TBL] [Abstract][Full Text] [Related]
11. Selecting Classification Methods for Small Samples of Next-Generation Sequencing Data. Zhu J; Yuan Z; Shu L; Liao W; Zhao M; Zhou Y Front Genet; 2021; 12():642227. PubMed ID: 33747051 [TBL] [Abstract][Full Text] [Related]
12. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. Bi R; Liu P BMC Bioinformatics; 2016 Mar; 17():146. PubMed ID: 27029470 [TBL] [Abstract][Full Text] [Related]
13. Identifying Differentially Expressed Genes of Zero Inflated Single Cell RNA Sequencing Data Using Mixed Model Score Tests. He Z; Pan Y; Shao F; Wang H Front Genet; 2021; 12():616686. PubMed ID: 33613638 [TBL] [Abstract][Full Text] [Related]
14. Robust identification of differentially expressed genes from RNA-seq data. Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426 [TBL] [Abstract][Full Text] [Related]
15. Power analysis and sample size estimation for RNA-Seq differential expression. Ching T; Huang S; Garmire LX RNA; 2014 Nov; 20(11):1684-96. PubMed ID: 25246651 [TBL] [Abstract][Full Text] [Related]
16. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
17. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047 [TBL] [Abstract][Full Text] [Related]
18. MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments. Vestal BE; Moore CM; Wynn E; Saba L; Fingerlin T; Kechris K BMC Bioinformatics; 2020 Aug; 21(1):375. PubMed ID: 32859148 [TBL] [Abstract][Full Text] [Related]