These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Budden AM; Eravci M; Watson AT; Campillo-Funollet E; Oliver AW; Naiman K; Carr AM Elife; 2023 Aug; 12():. PubMed ID: 37615341 [TBL] [Abstract][Full Text] [Related]
6. The Initial Response of a Eukaryotic Replisome to DNA Damage. Taylor MRG; Yeeles JTP Mol Cell; 2018 Jun; 70(6):1067-1080.e12. PubMed ID: 29944888 [TBL] [Abstract][Full Text] [Related]
7. Lesion Bypass and the Reactivation of Stalled Replication Forks. Marians KJ Annu Rev Biochem; 2018 Jun; 87():217-238. PubMed ID: 29298091 [TBL] [Abstract][Full Text] [Related]
8. Recombination and restart at blocked replication forks. Scully R; Elango R; Panday A; Willis NA Curr Opin Genet Dev; 2021 Dec; 71():154-162. PubMed ID: 34464818 [TBL] [Abstract][Full Text] [Related]
10. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart. Heuzé J; Kemiha S; Barthe A; Vilarrubias AT; Aouadi E; Aiello U; Libri D; Lin YL; Lengronne A; Poli J; Pasero P EMBO J; 2023 Dec; 42(23):e113104. PubMed ID: 37855233 [TBL] [Abstract][Full Text] [Related]
11. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Papamichos-Chronakis M; Peterson CL Nat Struct Mol Biol; 2008 Apr; 15(4):338-45. PubMed ID: 18376411 [TBL] [Abstract][Full Text] [Related]
12. Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication. Bainbridge LJ; Teague R; Doherty AJ Nucleic Acids Res; 2021 May; 49(9):4831-4847. PubMed ID: 33744934 [TBL] [Abstract][Full Text] [Related]
13. Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry. Hashimoto Y; Tanaka H J Biol Chem; 2021; 296():100033. PubMed ID: 33148697 [TBL] [Abstract][Full Text] [Related]
14. Direct restart of a replication fork stalled by a head-on RNA polymerase. Pomerantz RT; O'Donnell M Science; 2010 Jan; 327(5965):590-2. PubMed ID: 20110508 [TBL] [Abstract][Full Text] [Related]
15. The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. Svoboda M; Konvalinka J; Trempe JF; Grantz Saskova K DNA Repair (Amst); 2019 Aug; 80():45-51. PubMed ID: 31276951 [TBL] [Abstract][Full Text] [Related]
16. Spatial separation between replisome- and template-induced replication stress signaling. García-Rodríguez N; Morawska M; Wong RP; Daigaku Y; Ulrich HD EMBO J; 2018 May; 37(9):. PubMed ID: 29581097 [TBL] [Abstract][Full Text] [Related]
17. Replisome structure suggests mechanism for continuous fork progression and post-replication repair. Yang W; Seidman MM; Rupp WD; Gao Y DNA Repair (Amst); 2019 Sep; 81():102658. PubMed ID: 31303546 [TBL] [Abstract][Full Text] [Related]
18. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. Thakur RS; Basavaraju S; Khanduja JS; Muniyappa K; Nagaraju G J Biol Chem; 2015 Oct; 290(40):24119-39. PubMed ID: 26276393 [TBL] [Abstract][Full Text] [Related]
19. The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions. Kumar C; Batra S; Griffith JD; Remus D Elife; 2021 Sep; 10():. PubMed ID: 34494544 [TBL] [Abstract][Full Text] [Related]
20. Replisome assembly and the direct restart of stalled replication forks. Heller RC; Marians KJ Nat Rev Mol Cell Biol; 2006 Dec; 7(12):932-43. PubMed ID: 17139333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]