BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36993544)

  • 21. Spatially aware dimension reduction for spatial transcriptomics.
    Shang L; Zhou X
    Nat Commun; 2022 Nov; 13(1):7203. PubMed ID: 36418351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning.
    Chang Y; He F; Wang J; Chen S; Li J; Liu J; Yu Y; Su L; Ma A; Allen C; Lin Y; Sun S; Liu B; Javier Otero J; Chung D; Fu H; Li Z; Xu D; Ma Q
    Comput Struct Biotechnol J; 2022; 20():4600-4617. PubMed ID: 36090815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning.
    Zhang C; Dong K; Aihara K; Chen L; Zhang S
    Nucleic Acids Res; 2023 Nov; 51(20):e103. PubMed ID: 37811885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Belayer: Modeling discrete and continuous spatial variation in gene expression from spatially resolved transcriptomics.
    Ma C; Chitra U; Zhang S; Raphael BJ
    Cell Syst; 2022 Oct; 13(10):786-797.e13. PubMed ID: 36265465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring Cell-Cell Communications from Spatially Resolved Transcriptomics Data Using a Bayesian Tweedie Model.
    Wu D; Gaskins JT; Sekula M; Datta S
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially aware self-representation learning for tissue structure characterization and spatial functional genes identification.
    Zhang C; Li X; Huang W; Wang L; Shi Q
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37253698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion.
    Li Z; Song T; Yong J; Kuang R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benchmarking computational methods to identify spatially variable genes and peaks.
    Li Z; Patel ZM; Song D; Yan G; Li JJ; Pinello L
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial transcriptomics: new dimension of understanding biological complexity.
    Li Z; Peng G
    Biophys Rep; 2022 Jun; 8(3):119-135. PubMed ID: 37288247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.
    Sun S; Zhu J; Zhou X
    Nat Methods; 2020 Feb; 17(2):193-200. PubMed ID: 31988518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.
    Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian Hidden Mark Interaction Model for Detecting Spatially Variable Genes in Imaging-Based Spatially Resolved Transcriptomics Data.
    Yang J; Jiang X; Jin KW; Shin S; Li Q
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial Transcriptomic Technologies.
    Chen TY; You L; Hardillo JAU; Chien MP
    Cells; 2023 Aug; 12(16):. PubMed ID: 37626852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening cell-cell communication in spatial transcriptomics via collective optimal transport.
    Cang Z; Zhao Y; Almet AA; Stabell A; Ramos R; Plikus MV; Atwood SX; Nie Q
    Nat Methods; 2023 Feb; 20(2):218-228. PubMed ID: 36690742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Bayesian modified Ising model for identifying spatially variable genes from spatial transcriptomics data.
    Jiang X; Xiao G; Li Q
    Stat Med; 2022 Oct; 41(23):4647-4665. PubMed ID: 35871762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.
    Miller BF; Huang F; Atta L; Sahoo A; Fan J
    Nat Commun; 2022 Apr; 13(1):2339. PubMed ID: 35487922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statistical and machine learning methods for spatially resolved transcriptomics with histology.
    Hu J; Schroeder A; Coleman K; Chen C; Auerbach BJ; Li M
    Comput Struct Biotechnol J; 2021; 19():3829-3841. PubMed ID: 34285782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. spVC for the detection and interpretation of spatial gene expression variation.
    Yu S; Li WV
    Genome Biol; 2024 Apr; 25(1):103. PubMed ID: 38641849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.