These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36993850)

  • 1. Inversion models of aboveground grassland biomass in Xinjiang based on multisource data.
    Zhang RP; Zhou JH; Guo J; Miao YH; Zhang LL
    Front Plant Sci; 2023; 14():1152432. PubMed ID: 36993850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm.
    Wang Y; Wu G; Deng L; Tang Z; Wang K; Sun W; Shangguan Z
    Sci Rep; 2017 Jul; 7(1):6940. PubMed ID: 28761059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe.
    Zhu X; Chen X; Ma L; Liu W
    Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of aboveground biomass of senescence grassland in China's arid region using multi-source data.
    Zhou J; Zhang R; Guo J; Dai J; Zhang J; Zhang L; Miao Y
    Sci Total Environ; 2024 Mar; 918():170602. PubMed ID: 38325448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Estimation of Grassland Aboveground Biomass and Analysis of Its Response to Climatic Factors Using a Random Forest Algorithm in Xinjiang, China.
    Dong P; Jing C; Wang G; Shao Y; Gao Y
    Plants (Basel); 2024 Feb; 13(4):. PubMed ID: 38498537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic monitoring of aboveground biomass in inner Mongolia grasslands over the past 23 Years using GEE and analysis of its driving forces.
    Yang D; Yang Z; Wen Q; Ma L; Guo J; Chen A; Zhang M; Xing X; Yuan Y; Lan X; Yang X
    J Environ Manage; 2024 Mar; 354():120415. PubMed ID: 38417359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature sensitivities of vegetation indices and aboveground biomass are primarily linked with warming magnitude in high-cold grasslands.
    Fu G; Sun W
    Sci Total Environ; 2022 Oct; 843():157002. PubMed ID: 35772540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation model for aboveground biomass based on hyperspectral data from field and TM8 in Khorchin grassland, China.
    Zhang X; Chen X; Tian M; Fan Y; Ma J; Xing D
    PLoS One; 2020; 15(2):e0223934. PubMed ID: 32109248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial patterns and driving factors of aboveground and belowground biomass over the eastern Eurasian steppe.
    Ding L; Li Z; Shen B; Wang X; Xu D; Yan R; Yan Y; Xin X; Xiao J; Li M; Wang P
    Sci Total Environ; 2022 Jan; 803():149700. PubMed ID: 34487901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years.
    Ge J; Hou M; Liang T; Feng Q; Meng X; Liu J; Bao X; Gao H
    Sci Total Environ; 2022 Jun; 826():154226. PubMed ID: 35240176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture.
    Jiang F; Kutia M; Ma K; Chen S; Long J; Sun H
    Sci Total Environ; 2021 Sep; 785():147335. PubMed ID: 33933773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging.
    Ding L; Li Z; Wang X; Yan R; Shen B; Chen B; Xin X
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet.
    Fu G; Shen ZX
    PLoS One; 2016; 11(10):e0165643. PubMed ID: 27798690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Carbon sequestration characteristics of typical temperate natural grasslands in Ningxia, China].
    Ji B; Xie YZ; He JL; Wang ZJ; Jiang Q
    Ying Yong Sheng Tai Xue Bao; 2020 Nov; 31(11):3657-3664. PubMed ID: 33300715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.
    Liu S; Cheng F; Dong S; Zhao H; Hou X; Wu X
    Sci Rep; 2017 Jun; 7(1):4182. PubMed ID: 28646198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.
    Sun J; Qin X; Yang J
    Environ Monit Assess; 2016 Jan; 188(1):20. PubMed ID: 26661956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm.
    Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F
    PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaks in MODIS time series portend vegetation change: verification using long-term data in an arid grassland ecosystem.
    Browning DM; Maynard JJ; Karl JW; Peters DC
    Ecol Appl; 2017 Jul; 27(5):1677-1693. PubMed ID: 28423459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning models for predicting vegetation conditions in Mahanadi River basin.
    Raj DK; Gopikrishnan T
    Environ Monit Assess; 2023 Nov; 195(12):1401. PubMed ID: 37917222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features.
    Lin X; Chen J; Lou P; Yi S; Qin Y; You H; Han X
    Plant Methods; 2021 Sep; 17(1):96. PubMed ID: 34535179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.