BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36994207)

  • 1. High-throughput drug screening identifies fluoxetine as a potential therapeutic agent for neuroendocrine prostate cancer.
    Chen L; Ji Y; Li A; Liu B; Shen K; Su R; Ma Z; Zhang W; Wang Q; Zhu Y; Xue W
    Front Oncol; 2023; 13():1085569. PubMed ID: 36994207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repurposing ketotifen as a therapeutic strategy for neuroendocrine prostate cancer by targeting the IL-6/STAT3 pathway.
    Ji Y; Liu B; Chen L; Li A; Shen K; Su R; Zhang W; Zhu Y; Wang Q; Xue W
    Cell Oncol (Dordr); 2023 Oct; 46(5):1445-1456. PubMed ID: 37120492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Drug Repurposing Screen Identifies Fludarabine Phosphate as a Potential Therapeutic Agent for N-MYC Overexpressing Neuroendocrine Prostate Cancers.
    Elhasasna H; Khan R; Bhanumathy KK; Vizeacoumar FS; Walke P; Bautista M; Dahiya DK; Maranda V; Patel H; Balagopal A; Alli N; Krishnan A; Freywald A; Vizeacoumar FJ
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific classification and new therapeutic targets for neuroendocrine prostate cancer: A patient-based, diagnostic study.
    Wang Y; Wu N; Wang K; Liao Y; Guo J; Zhong B; Guo T; Liang J; Jiang N
    Front Genet; 2022; 13():955133. PubMed ID: 36118857
    [No Abstract]   [Full Text] [Related]  

  • 5. Addressing the need for more therapeutic options in neuroendocrine prostate cancer.
    Kemble J; Kwon ED; Karnes RJ
    Expert Rev Anticancer Ther; 2023 Feb; 23(2):177-185. PubMed ID: 36698089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice.
    Sun F; Zhang ZW; Tan EM; Lim ZLR; Li Y; Wang XC; Chua SE; Li J; Cheung E; Yong EL
    Carcinogenesis; 2016 Jul; 37(7):701-711. PubMed ID: 27207661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition.
    Li Y; Donmez N; Sahinalp C; Xie N; Wang Y; Xue H; Mo F; Beltran H; Gleave M; Wang Y; Collins C; Dong X
    Eur Urol; 2017 Jan; 71(1):68-78. PubMed ID: 27180064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LIN28B promotes the development of neuroendocrine prostate cancer.
    Lovnicki J; Gan Y; Feng T; Li Y; Xie N; Ho CH; Lee AR; Chen X; Nappi L; Han B; Fazli L; Huang J; Gleave ME; Dong X
    J Clin Invest; 2020 Oct; 130(10):5338-5348. PubMed ID: 32634132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer.
    Hsu EC; Shen M; Aslan M; Liu S; Kumar M; Garcia-Marques F; Nguyen HM; Nolley R; Pitteri SJ; Corey E; Brooks JD; Stoyanova T
    Sci Rep; 2021 Jun; 11(1):13305. PubMed ID: 34172788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer.
    Unno K; Chalmers ZR; Pamarthy S; Vatapalli R; Rodriguez Y; Lysy B; Mok H; Sagar V; Han H; Yoo YA; Ku SY; Beltran H; Zhao Y; Abdulkadir SA
    Cancer Res; 2021 Apr; 81(8):2157-2170. PubMed ID: 33637566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer.
    Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A
    Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems Medicine Approaches to Improving Understanding, Treatment, and Clinical Management of Neuroendocrine Prostate Cancer.
    Yadav KK; Shameer K; Readhead B; Yadav SS; Li L; Kasarskis A; Tewari AK; Dudley JT
    Curr Pharm Des; 2016; 22(34):5234-5248. PubMed ID: 27174811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycomb-mediated silencing in neuroendocrine prostate cancer.
    Clermont PL; Lin D; Crea F; Wu R; Xue H; Wang Y; Thu KL; Lam WL; Collins CC; Wang Y; Helgason CD
    Clin Epigenetics; 2015; 7(1):40. PubMed ID: 25859291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer.
    Lin D; Dong X; Wang K; Wyatt AW; Crea F; Xue H; Wang Y; Wu R; Bell RH; Haegert A; Brahmbhatt S; Hurtado-Coll A; Gout PW; Fazli L; Gleave ME; Collins CC; Wang Y
    Oncotarget; 2015 Jan; 6(3):1806-20. PubMed ID: 25544761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses.
    Shui X; Xu R; Zhang C; Meng H; Zhao J; Shi C
    Lab Invest; 2022 Apr; 102(4):332-340. PubMed ID: 34937865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications.
    Ramnarine VR; Alshalalfa M; Mo F; Nabavi N; Erho N; Takhar M; Shukin R; Brahmbhatt S; Gawronski A; Kobelev M; Nouri M; Lin D; Tsai H; Lotan TL; Karnes RJ; Rubin MA; Zoubeidi A; Gleave ME; Sahinalp C; Wyatt AW; Volik SV; Beltran H; Davicioni E; Wang Y; Collins CC
    Gigascience; 2018 Jun; 7(6):. PubMed ID: 29757368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-serum prostate-specific antigen level predicts poor outcomes in patients with primary neuroendocrine prostate cancer.
    Wang J; Xu W; Mierxiati A; Huang Y; Wei Y; Lin G; Dai B; Freedland SJ; Qin X; Zhu Y; Ye DW
    Prostate; 2019 Sep; 79(13):1563-1571. PubMed ID: 31376193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer.
    DeLucia DC; Cardillo TM; Ang L; Labrecque MP; Zhang A; Hopkins JE; De Sarkar N; Coleman I; da Costa RMG; Corey E; True LD; Haffner MC; Schweizer MT; Morrissey C; Nelson PS; Lee JK
    Clin Cancer Res; 2021 Feb; 27(3):759-774. PubMed ID: 33199493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a neuroendocrine prostate cancer model driven by the RNA splicing factor SRRM4.
    Li Y; Chen R; Bowden M; Mo F; Lin YY; Gleave M; Collins C; Dong X
    Oncotarget; 2017 Sep; 8(40):66878-66888. PubMed ID: 28978002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer.
    Shan J; Al-Muftah MA; Al-Kowari MK; Abuaqel SWJ; Al-Rumaihi K; Al-Bozom I; Li P; Chouchane L
    Cell Death Discov; 2019; 5():139. PubMed ID: 31583122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.