These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36994235)
1. Parsimonious methodology for synthesis of silver and copper functionalized cellulose. Patch D; O'Connor N; Meira D; Scott J; Koch I; Weber K Cellulose (Lond); 2023; 30(6):3455-3472. PubMed ID: 36994235 [TBL] [Abstract][Full Text] [Related]
2. Metal Content and Structure of Textiles in Textile Metal Threads in Croatia from 17th to 20th Century. Šimić K; Soljačić I; Mudronja D; Petrović Leš T Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009397 [TBL] [Abstract][Full Text] [Related]
3. Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Lombi E; Donner E; Scheckel KG; Sekine R; Lorenz C; Von Goetz N; Nowack B Chemosphere; 2014 Sep; 111():352-8. PubMed ID: 24997939 [TBL] [Abstract][Full Text] [Related]
4. Pilot study on the identification of silver in skin layers and urine after dermal exposure to a functionalized textile. Bianco C; Kezic S; Visser MJ; Pluut O; Adami G; Krystek P Talanta; 2015 May; 136():23-8. PubMed ID: 25702980 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a method for the weathering and detachment of representative nanomaterials from conventional silver-containing textiles. Patch D; Koch I; Peloquin D; O'Carroll D; Weber K Chemosphere; 2021 Dec; 284():131269. PubMed ID: 34186226 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Eremenko AM; Petrik IS; Smirnova NP; Rudenko AV; Marikvas YS Nanoscale Res Lett; 2016 Dec; 11(1):28. PubMed ID: 26781286 [TBL] [Abstract][Full Text] [Related]
7. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Hatamie A; Khan A; Golabi M; Turner AP; Beni V; Mak WC; Sadollahkhani A; Alnoor H; Zargar B; Bano S; Nur O; Willander M Langmuir; 2015 Oct; 31(39):10913-21. PubMed ID: 26372851 [TBL] [Abstract][Full Text] [Related]
8. Cradle-to-grave environmental impact assessment of silver enabled t-shirts: Do nano-specific impacts exceed non nano-specific emissions? Temizel-Sekeryan S; Hicks AL NanoImpact; 2021 Apr; 22():100319. PubMed ID: 35559976 [TBL] [Abstract][Full Text] [Related]
9. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat. Wagener S; Dommershausen N; Jungnickel H; Laux P; Mitrano D; Nowack B; Schneider G; Luch A Environ Sci Technol; 2016 Jun; 50(11):5927-34. PubMed ID: 27128362 [TBL] [Abstract][Full Text] [Related]
10. In vitro percutaneous penetration and characterization of silver from silver-containing textiles. Bianco C; Kezic S; Crosera M; Svetličić V; Šegota S; Maina G; Romano C; Larese F; Adami G Int J Nanomedicine; 2015; 10():1899-908. PubMed ID: 25792824 [TBL] [Abstract][Full Text] [Related]
11. In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. Shaheen TI; Abd El Aty AA Int J Biol Macromol; 2018 Oct; 118(Pt B):2121-2130. PubMed ID: 30012491 [TBL] [Abstract][Full Text] [Related]
12. Green synthesis of silver nanoparticles transformed synthetic textile dye into less toxic intermediate molecules through LC-MS analysis and treated the actual wastewater. Ahmed T; Noman M; Shahid M; Niazi MBK; Hussain S; Manzoor N; Wang X; Li B Environ Res; 2020 Dec; 191():110142. PubMed ID: 32898565 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials. Guerrero-Arguero I; Khan SR; Henry BM; Garcia-Vilanova A; Chiem K; Ye C; Shrestha S; Knight D; Cristner M; Hill S; Waldman WJ; Dutta PK; Torrelles JB; Martinez-Sobrido L; Nagy AM Int J Nanomedicine; 2023; 18():2307-2324. PubMed ID: 37163142 [TBL] [Abstract][Full Text] [Related]
14. Green synthesis, characterization of silver nanoparticals for biomedical application and environmental remediation. Vorobyova V; Vasyliev G; Uschapovskiy D; Lyudmyla K; Skiba M J Microbiol Methods; 2022 Feb; 193():106384. PubMed ID: 34826520 [TBL] [Abstract][Full Text] [Related]
15. Green chemistry based in-situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate. Shahid-Ul-Islam ; Butola BS; Kumar A Int J Biol Macromol; 2020 Jun; 152():1135-1145. PubMed ID: 31783071 [TBL] [Abstract][Full Text] [Related]
16. Novel Fabrication of Silver-Coated Copper Nanowires with Organic Compound Solution. Lee S; Wern C; Yi S Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161079 [TBL] [Abstract][Full Text] [Related]
17. Embedment of silver into temperature- and pH-responsive microgel for the development of smart textiles with simultaneous moisture management and controlled antimicrobial activities. Štular D; Jerman I; Naglič I; Simončič B; Tomšič B Carbohydr Polym; 2017 Mar; 159():161-170. PubMed ID: 28038745 [TBL] [Abstract][Full Text] [Related]
18. Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials. Ivanauskas R; Ancutienė I; Milašienė D; Ivanauskas A; Bronušienė A Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363214 [TBL] [Abstract][Full Text] [Related]
19. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Qian J; Dong Q; Chun K; Zhu D; Zhang X; Mao Y; Culver JN; Tai S; German JR; Dean DP; Miller JT; Wang L; Wu T; Li T; Brozena AH; Briber RM; Milton DK; Bentley WE; Hu L Nat Nanotechnol; 2023 Feb; 18(2):168-176. PubMed ID: 36585515 [TBL] [Abstract][Full Text] [Related]
20. Leaching potential of silver from nanosilver-treated textile products. Limpiteeprakan P; Babel S Environ Monit Assess; 2016 Mar; 188(3):156. PubMed ID: 26869046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]