These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36994364)

  • 1. Synthesis and investigation on microstructural, mechanical features of mesoporous hardystonite/reduced graphene oxide nanocomposite for medical applications.
    Bagherpour I; Yaghtin A; Naghib SM; Molaabasi F
    Front Bioeng Biotechnol; 2023; 11():1073435. PubMed ID: 36994364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.
    Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications.
    Tavakoli M; Emadi R; Salehi H; Labbaf S; Varshosaz J
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126510. PubMed ID: 37625748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating silica-coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance.
    Li Z; Zhu W; Bi S; Li R; Hu H; Lin H; Tuan RS; Khor KA
    J Biomed Mater Res A; 2020 Apr; 108(4):1016-1027. PubMed ID: 31925910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications.
    Hamvar M; Bakhsheshi-Rad HR; Omidi M; Ismail AF; Aziz M; Berto F; Chen X
    Biomed Phys Eng Express; 2020 Mar; 6(3):035011. PubMed ID: 33438656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Kharaziha M; Kasiri-Asgarani M; Omidi M; Razzaghi M; Ismail AF; Sharif S; RamaKrishna S; Berto F
    J Mech Behav Biomed Mater; 2021 Apr; 116():104320. PubMed ID: 33571842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration.
    Kumari S; Singh D; Srivastava P; Singh BN; Mishra A
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36113451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide.
    Kanayama I; Miyaji H; Takita H; Nishida E; Tsuji M; Fugetsu B; Sun L; Inoue K; Ibara A; Akasaka T; Sugaya T; Kawanami M
    Int J Nanomedicine; 2014; 9():3363-73. PubMed ID: 25050063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).
    Gurunathan S; Han J; Park JH; Kim JH
    Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites.
    Gholampour A; Valizadeh Kiamahalleh M; Tran DNH; Ozbakkaloglu T; Losic D
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43275-43286. PubMed ID: 29165994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and in vitro studies of graphene oxide/chitosan-polyvinyl alcohol films.
    Pandele AM; Ionita M; Crica L; Dinescu S; Costache M; Iovu H
    Carbohydr Polym; 2014 Feb; 102():813-20. PubMed ID: 24507351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature.
    Jiang Z; Chen W; Jin L; Cui F; Song Z; Zhu C
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of polycaporolacton fumarate coating on mechanical properties and in vitro behavior of porous diopside-hardystonite nano-composite scaffold.
    Sadeghzade S; Emadi R; Tavangarian F; Doostmohammadi A
    J Mech Behav Biomed Mater; 2020 Jan; 101():103445. PubMed ID: 31569038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Graphene Oxide-Extracellular Matrix Scaffolds as a Multifunctional and Highly Biocompatible Nanocomposite for Wound Healing: Insights into Characterization and Electroconductive Potential.
    Cifuentes J; Muñoz-Camargo C; Cruz JC
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.
    Kumar S; Azam D; Raj S; Kolanthai E; Vasu KS; Sood AK; Chatterjee K
    J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):732-49. PubMed ID: 26482196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Waste Polystyrene-Based Copper Oxide/Reduced Graphene Oxide Composites and Their Mechanical, Electrical and Thermal Properties.
    Ahmad W; Ahmad Q; Yaseen M; Ahmad I; Hussain F; Mohamed Jan B; Ikram R; Stylianakis MM; Kenanakis G
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.
    Ramazani S; Karimi M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():325-34. PubMed ID: 26249597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications.
    Farzin A; Hassan S; Ebrahimi-Barough S; Ai A; Hasanzadeh E; Goodarzi A; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110009. PubMed ID: 31546356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering.
    Narayanan KB; Choi SM; Han SS
    Colloids Surf B Biointerfaces; 2019 Sep; 181():539-548. PubMed ID: 31185446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.