These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 36994406)
61. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
62. 3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. Zhu H; Monavari M; Zheng K; Distler T; Ouyang L; Heid S; Jin Z; He J; Li D; Boccaccini AR Small; 2022 Mar; 18(12):e2104996. PubMed ID: 35102718 [TBL] [Abstract][Full Text] [Related]
63. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. Chen J; Huang D; Wang L; Hou J; Zhang H; Li Y; Zhong S; Wang Y; Wu Y; Huang W J Colloid Interface Sci; 2020 Aug; 574():162-173. PubMed ID: 32311538 [TBL] [Abstract][Full Text] [Related]
64. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652 [TBL] [Abstract][Full Text] [Related]
65. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Ahlfeld T; Doberenz F; Kilian D; Vater C; Korn P; Lauer G; Lode A; Gelinsky M Biofabrication; 2018 Jul; 10(4):045002. PubMed ID: 30004388 [TBL] [Abstract][Full Text] [Related]
66. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189 [TBL] [Abstract][Full Text] [Related]
67. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
68. Enzyme- and UV-Mediated Double-Network Hybrid Hydrogels for 3D Cell Culture application. Li XP; Zou L; Abodunrin OD; Wang XW; Huang NP Macromol Biosci; 2021 Nov; 21(11):e2100189. PubMed ID: 34486230 [TBL] [Abstract][Full Text] [Related]
69. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077 [TBL] [Abstract][Full Text] [Related]
70. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355 [TBL] [Abstract][Full Text] [Related]
71. Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Xie M; Gao Q; Zhao H; Nie J; Fu Z; Wang H; Chen L; Shao L; Fu J; Chen Z; He Y Small; 2019 Jan; 15(4):e1804216. PubMed ID: 30569632 [TBL] [Abstract][Full Text] [Related]
72. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
73. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649 [TBL] [Abstract][Full Text] [Related]
74. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mao Q; Wang Y; Li Y; Juengpanich S; Li W; Chen M; Yin J; Fu J; Cai X Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110625. PubMed ID: 32228893 [TBL] [Abstract][Full Text] [Related]
76. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Kim W; Kim G Biofabrication; 2019 Nov; 12(1):015007. PubMed ID: 31509811 [TBL] [Abstract][Full Text] [Related]
77. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Wenz A; Borchers K; Tovar GEM; Kluger PJ Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579 [TBL] [Abstract][Full Text] [Related]
78. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects. Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837 [TBL] [Abstract][Full Text] [Related]
80. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Choe G; Lee M; Oh S; Seok JM; Kim J; Im S; Park SA; Lee JY Biomater Adv; 2022 May; 136():212789. PubMed ID: 35929321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]