These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 36994464)

  • 1. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities.
    Lu ZY; Chen PB; Xu QY; Li B; Jiang SD; Jiang LS; Zheng XF
    JOR Spine; 2023 Mar; 6(1):e1242. PubMed ID: 36994464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement.
    Rao Y; Yang X; Pan C; Wang C; Wang K
    Front Plant Sci; 2022; 13():839001. PubMed ID: 35645999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Cre Knockin Rat Lines Using CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    Methods Mol Biol; 2017; 1642():37-52. PubMed ID: 28815492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Editing in Clinical Practice: Where are We?
    Mittal RD
    Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle.
    Che H; Li J; Li Y; Ma C; Liu H; Qin J; Dong J; Zhang Z; Xian CJ; Miao D; Wang L; Ren Y
    Elife; 2020 Mar; 9():. PubMed ID: 32125276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cre/Lox System to Assess the Development of the Mouse Brain.
    Kratochwil CF; Rijli FM
    Methods Mol Biol; 2020; 2047():491-512. PubMed ID: 31552673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy Approach for Intervertebral Disc Degeneration: An Update.
    Takeoka Y; Yurube T; Nishida K
    Neurospine; 2020 Mar; 17(1):3-14. PubMed ID: 32252149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice.
    Lee AY; Lloyd KC
    FEBS Open Bio; 2014; 4():637-42. PubMed ID: 25161872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The Development of Gene Knockout Technologies in Large and Medium Animal Models].
    Liu XJ; Wang H; Yan F; Gao MM; Liu GQ; Huang W
    Sheng Li Ke Xue Jin Zhan; 2015 Feb; 46(1):11-6. PubMed ID: 26103720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
    Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H
    Front Immunol; 2018; 9():1711. PubMed ID: 30233563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Gene Therapy Delivery Systems for Intervertebral Disc Degeneration.
    Chen S; Luo M; Kou H; Shang G; Ji Y; Liu H
    Curr Pharm Biotechnol; 2020; 21(3):194-205. PubMed ID: 31749423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Therapy for Intervertebral Disc Degeneration.
    Roh EJ; Darai A; Kyung JW; Choi H; Kwon SY; Bhujel B; Kim KT; Han I
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33557287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes.
    Pritchard CEJ; Kroese LJ; Huijbers IJ
    Methods Mol Biol; 2017; 1642():21-35. PubMed ID: 28815491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [CRISPR/Cas9 technology in disease research and therapy: a review].
    Shi M; Shen Z; Zhang N; Wang L; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1205-1228. PubMed ID: 33973436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 18. [Application of CRISPR-Cas9 gene editing technology in crop breeding].
    Yin W; Chen Z; Huang J; Ye H; Lu T; Lu M; Rao Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):399-424. PubMed ID: 36847080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes.
    Nakagawa Y; Sakuma T; Sakamoto T; Ohmuraya M; Nakagata N; Yamamoto T
    BMC Biotechnol; 2015 May; 15():33. PubMed ID: 25997509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins.
    Quadros RM; Miura H; Harms DW; Akatsuka H; Sato T; Aida T; Redder R; Richardson GP; Inagaki Y; Sakai D; Buckley SM; Seshacharyulu P; Batra SK; Behlke MA; Zeiner SA; Jacobi AM; Izu Y; Thoreson WB; Urness LD; Mansour SL; Ohtsuka M; Gurumurthy CB
    Genome Biol; 2017 May; 18(1):92. PubMed ID: 28511701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.