These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36994570)

  • 1. [Microorganisms used for bioleaching of metals from typical solid wastes and their leaching mechanism: a review].
    Jia R; Gu W; Zhao J; BAl J
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1040-1055. PubMed ID: 36994570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances.
    Sethurajan M; van Hullebusch ED; Nancharaiah YV
    J Environ Manage; 2018 Apr; 211():138-153. PubMed ID: 29408062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach.
    Yaashikaa PR; Priyanka B; Senthil Kumar P; Karishma S; Jeevanantham S; Indraganti S
    Chemosphere; 2022 Jan; 287(Pt 2):132230. PubMed ID: 34826922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.
    Potysz A; van Hullebusch ED; Kierczak J
    J Environ Manage; 2018 Aug; 219():138-152. PubMed ID: 29738933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans.
    Mikoda B; Potysz A; Kmiecik E
    J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.
    Ramanathan T; Ting YP
    Chemosphere; 2016 Oct; 160():54-61. PubMed ID: 27362528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review.
    Habibi A; Shamshiri Kourdestani S; Hadadi M
    Waste Manag Res; 2020 Mar; 38(3):232-244. PubMed ID: 31918634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallurgical recovery of metals from electronic waste: a review.
    Cui J; Zhang L
    J Hazard Mater; 2008 Oct; 158(2-3):228-56. PubMed ID: 18359555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6989-7008. PubMed ID: 28091997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching for resource recovery from low-grade wastes like fly and bottom ashes from municipal incinerators: A SWOT analysis.
    Gomes HI; Funari V; Ferrari R
    Sci Total Environ; 2020 May; 715():136945. PubMed ID: 32007897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.
    Guo X; Wang K; He M; Liu Z; Yang H; Li S
    J Environ Sci (China); 2014 Jul; 26(7):1549-56. PubMed ID: 25080005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM).
    Tian B; Cui Y; Qin Z; Wen L; Li Z; Chu H; Xin B
    J Environ Manage; 2022 Jun; 312():114927. PubMed ID: 35358844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.
    Wang S; Zheng Y; Yan W; Chen L; Dummi Mahadevan G; Zhao F
    J Hazard Mater; 2016 Dec; 320():393-400. PubMed ID: 27585271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geopolymerization of solid waste of non-ferrous metallurgy - A review.
    Singh J; Singh SP
    J Environ Manage; 2019 Dec; 251():109571. PubMed ID: 31546140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial leaching of metals from solid industrial wastes.
    Mishra D; Rhee YH
    J Microbiol; 2014 Jan; 52(1):1-7. PubMed ID: 24390831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil).
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7504-16. PubMed ID: 26728285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.
    Funari V; Mäkinen J; Salminen J; Braga R; Dinelli E; Revitzer H
    Waste Manag; 2017 Feb; 60():397-406. PubMed ID: 27478021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
    Zhan L; Xu Z
    Environ Sci Technol; 2014 Dec; 48(24):14092-102. PubMed ID: 25407107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial influence and dynamics of metallurgical waste dissolution in a landfill and recovery context: A multi-phase experimental approach and geochemical model.
    Potysz A
    Chemosphere; 2023 Jan; 311(Pt 1):136964. PubMed ID: 36419268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.