BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36994573)

  • 1. [Immobilization of
    Guo Y; Wang G; Li K; Han J; Chen H; Zhang S; Li Y; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1083-1095. PubMed ID: 36994573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low acyl gellan gum immobilized Lactobacillus bulgaricus T15 produce D-lactic acid from non-detoxified corn stover hydrolysate.
    Guo Y; Zhao Y; Gao Y; Wang G; Zhao Y; Zhang J; Li Y; Wang X; Liu J; Chen G
    Biotechnol Biofuels Bioprod; 2023 Mar; 16(1):43. PubMed ID: 36915198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid.
    Radosavljević M; Lević S; Belović M; Pejin J; Djukić-Vuković A; Mojović L; Nedović V
    Bioprocess Biosyst Eng; 2020 Feb; 43(2):315-322. PubMed ID: 31605205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular weight effects of low acyl gellan gum on antioxidant capacity and rheological properties.
    Baawad A; Rice C; Hamil T; Murphy K; Park J; Kim DS
    J Food Sci; 2021 Oct; 86(10):4275-4287. PubMed ID: 34435362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
    Sahoo TK; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads.
    Garbayo I; Vílchez C; Vega JM; Nava-Saucedo JE; Barbotin JN
    Biotechnol Lett; 2004 Dec; 26(23):1825-7. PubMed ID: 15672222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment of corn stover by solid acid for d-lactic acid fermentation.
    Wang X; Wang G; Yu X; Chen H; Sun Y; Chen G
    Bioresour Technol; 2017 Sep; 239():490-495. PubMed ID: 28549306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate.
    Zhao T; Liu D; Ren H; Shi X; Zhao N; Chen Y; Ying H
    J Microbiol Biotechnol; 2014 Dec; 24(12):1664-72. PubMed ID: 25085568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.
    Zhao Z; Xie X; Wang Z; Tao Y; Niu X; Huang X; Liu L; Li Z
    J Biosci Bioeng; 2016 Jun; 121(6):645-651. PubMed ID: 26803707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous fermentation using high cell density cell recycle system for L-lactic acid production.
    Gupta V; Odaneth AA; Lali AM
    Prep Biochem Biotechnol; 2024 May; 54(5):668-679. PubMed ID: 38190739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii ssp. bulgaricus 2038 and Streptococcus thermophilus 1131.
    Yamamoto E; Watanabe R; Ichimura T; Ishida T; Kimura K
    J Dairy Sci; 2021 Feb; 104(2):1454-1464. PubMed ID: 33309355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of D-lactic acid by bacterial fermentation of rice starch.
    Fukushima K; Sogo K; Miura S; Kimura Y
    Macromol Biosci; 2004 Nov; 4(11):1021-7. PubMed ID: 15529396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar Utilization and Acid Production by Free and Entrapped Cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a Whey Permeate Medium.
    Audet P; Paquin C; Lacroix C
    Appl Environ Microbiol; 1989 Jan; 55(1):185-9. PubMed ID: 16347822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock.
    Chen PT; Hong ZS; Cheng CL; Ng IS; Lo YC; Nagarajan D; Chang JS
    Bioresour Technol; 2020 Jul; 308():123266. PubMed ID: 32251855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation.
    Hu J; Lin Y; Zhang Z; Xiang T; Mei Y; Zhao S; Liang Y; Peng N
    Bioresour Technol; 2016 Aug; 214():74-80. PubMed ID: 27128191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.
    Li C; Zhang GF; Mao X; Wang JY; Duan CY; Wang ZJ; Liu LB
    J Dairy Sci; 2016 Jun; 99(6):4243-4250. PubMed ID: 26995135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of immobilization conditions for Lactobacillus pentosus cells.
    Wang J; Huang J; Guo H; Jiang S; Zhang J; Ning Y; Fang M; Liu S
    Bioprocess Biosyst Eng; 2020 Jun; 43(6):1071-1079. PubMed ID: 32036453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and morphology of thermophilic dairy starters in alginate beads.
    Lamboley L; St-Gelais D; Champagne CP; Lamoureux M
    J Gen Appl Microbiol; 2003 Jun; 49(3):205-14. PubMed ID: 12949701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.
    Zhang Y; Vadlani PV
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1897-904. PubMed ID: 23670636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.