These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36994602)

  • 41. Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms.
    Niu Y; Wang K; Zheng S; Wang Y; Ren Q; Li H; Ding L; Li W; Zhang L
    Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32540977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II.
    Fox MA; Thwaite JE; Ulaeto DO; Atkins TP; Atkins HS
    Peptides; 2012 Feb; 33(2):197-205. PubMed ID: 22289499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Design, screening and antibacterial activity evaluation of the novel antibacterial peptide KR-1].
    He J; Liang D; Liang Y; Zuo S; Zhao W
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jun; 41(6):923-930. PubMed ID: 34238746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Do deep learning models make a difference in the identification of antimicrobial peptides?
    García-Jacas CR; Pinacho-Castellanos SA; García-González LA; Brizuela CA
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.
    Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antimicrobial peptides Pep19-2.5 and Pep19-4LF inhibit Streptococcus mutans growth and biofilm formation.
    Jannadi H; Correa W; Zhang Z; Brandenburg K; Oueslati R; Rouabhia M
    Microb Pathog; 2019 Aug; 133():103546. PubMed ID: 31112769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporin-Like Peptides Show Antimicrobial and Anti-Biofilm Activities against
    Wei H; Xie Z; Tan X; Guo R; Song Y; Xie X; Wang R; Li L; Wang M; Zhang Y
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria.
    Altman H; Steinberg D; Porat Y; Mor A; Fridman D; Friedman M; Bachrach G
    J Antimicrob Chemother; 2006 Jul; 58(1):198-201. PubMed ID: 16687459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Longitudinal analysis of the association of human salivary antimicrobial agents with caries increment and cariogenic micro-organisms: a two-year cohort study.
    Kirstilä V; Häkkinen P; Jentsch H; Vilja P; Tenovuo J
    J Dent Res; 1998 Jan; 77(1):73-80. PubMed ID: 9437402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection.
    Li LN; Guo LH; Lux R; Eckert R; Yarbrough D; He J; Anderson M; Shi WY
    Int J Oral Sci; 2010 Jun; 2(2):66-73. PubMed ID: 20737932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing antimicrobial peptides using deep learning and molecular dynamic simulations.
    Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity.
    Ng XY; Rosdi BA; Shahrudin S
    Biomed Res Int; 2015; 2015():212715. PubMed ID: 25802839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discovery and Mechanism of Action of a Novel Antimicrobial Peptide from an Earthworm.
    Wu Y; Deng S; Wang X; Thunders M; Qiu J; Li Y
    Microbiol Spectr; 2023 Feb; 11(1):e0320622. PubMed ID: 36602379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cooperativity in Bacterial Membrane Association Controls the Synergistic Activities of Antimicrobial Peptides.
    Nguyen TN; Teimouri H; Medvedeva A; Kolomeisky AB
    J Phys Chem B; 2022 Sep; 126(38):7365-7372. PubMed ID: 36108158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Handcrafted versus non-handcrafted (self-supervised) features for the classification of antimicrobial peptides: complementary or redundant?
    García-Jacas CR; García-González LA; Martinez-Rios F; Tapia-Contreras IP; Brizuela CA
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36215083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.