These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36994611)

  • 21. The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets.
    Quetzeri-Santiago MA; Castrejón-Pita AA; Castrejón-Pita JR
    Sci Rep; 2019 Oct; 9(1):15030. PubMed ID: 31636321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves.
    Zhou Z; Cao C; Cao L; Zheng L; Xu J; Li F; Huang Q
    Colloids Surf B Biointerfaces; 2018 Jul; 167():206-212. PubMed ID: 29655047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing Droplet Deposition on Wired and Curved Superhydrophobic Leaves.
    Song M; Hu D; Zheng X; Wang L; Yu Z; An W; Na R; Li C; Li N; Lu Z; Dong Z; Wang Y; Jiang L
    ACS Nano; 2019 Jul; 13(7):7966-7974. PubMed ID: 31268304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Further Step toward a Comprehensive Understanding of the Effect of Surfactant Additions on Altering the Impact Dynamics of Water Droplets.
    Esmaeili AR; Mir N; Mohammadi R
    Langmuir; 2021 Jan; 37(2):841-851. PubMed ID: 33397113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uniform Spread of High-Speed Drops on Superhydrophobic Surface by Live-Oligomeric Surfactant Jamming.
    Luo S; Chen Z; Dong Z; Fan Y; Chen Y; Liu B; Yu C; Li C; Dai H; Li H; Wang Y; Jiang L
    Adv Mater; 2019 Oct; 31(41):e1904475. PubMed ID: 31465133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading.
    Kumar N; Couzis A; Maldarelli C
    J Colloid Interface Sci; 2003 Nov; 267(2):272-85. PubMed ID: 14583202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (
    Hagedorn O; Fleute-Schlachter I; Mainx HG; Zeisler-Diehl V; Koch K
    Beilstein J Nanotechnol; 2017; 8():2345-2356. PubMed ID: 29181291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves.
    Tang X; Dong J; Li X
    J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of surfactants on adhesion, spreading, and retention of herbicide droplet on the surface of the leaves and seeds.
    Basu S; Luthra J; Nigam KD
    J Environ Sci Health B; 2002 Jul; 37(4):331-44. PubMed ID: 12081025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of factors enhancing droplets spreading on leaves with burrs.
    Wang P; Xu C; Li C; Wang L; Niu Q; Li H
    Front Plant Sci; 2023; 14():1220878. PubMed ID: 37662168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spreading of benquitrione droplets on superhydrophobic leaves through pillar[5]arene-based host-guest chemistry.
    Song Q; Mei L; Zhang X; Xu P; Dhinakaran MK; Li H; Yang G
    Chem Commun (Camb); 2020 Jul; 56(55):7593-7596. PubMed ID: 32514516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet Impact on Superhydrophobic Mesh Surfaces.
    Chen X; Sun JJ; Zheng SF; Wei BJ; Zhang LZ; Gao SR; Yang YR; Wang XD
    Langmuir; 2024 Aug; 40(32):17049-17059. PubMed ID: 39083646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves.
    Zhou ZL; Cao C; Cao LD; Zheng L; Xu J; Li FM; Huang QL
    PLoS One; 2017; 12(5):e0176870. PubMed ID: 28472108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces.
    Zhu H; Yu Y; Ozkan HE; Derksen RC; Krause CR
    Commun Agric Appl Biol Sci; 2008; 73(4):711-8. PubMed ID: 19226818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.