These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36994998)

  • 1. Effect of radial advection on autocatalytic reaction-diffusion fronts.
    Comolli A; Negrojević L; Brau F; De Wit A
    Phys Chem Chem Phys; 2023 Apr; 25(15):10604-10619. PubMed ID: 36994998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of A+B → C reaction fronts under radial advection in three dimensions.
    Comolli A; De Wit A; Brau F
    Phys Rev E; 2019 Nov; 100(5-1):052213. PubMed ID: 31869892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of A+B→C reaction fronts under radial advection in a Poiseuille flow.
    Comolli A; De Wit A; Brau F
    Phys Rev E; 2021 Oct; 104(4-1):044206. PubMed ID: 34781512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of rectilinear vs radial advection on the yield of A + B → C reaction fronts: A comparison.
    Brau F; De Wit A
    J Chem Phys; 2020 Feb; 152(5):054716. PubMed ID: 32035449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow Control of A+B→C Fronts by Radial Injection.
    Brau F; Schuszter G; De Wit A
    Phys Rev Lett; 2017 Mar; 118(13):134101. PubMed ID: 28409971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of radial injection and solution thickness on the dynamics of confined A + B → C chemical fronts.
    Tóth Á; Schuszter G; Das NP; Lantos E; Horváth D; De Wit A; Brau F
    Phys Chem Chem Phys; 2020 May; 22(18):10278-10285. PubMed ID: 32356539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advection of chemical reaction fronts in a porous medium.
    Koptyug IV; Zhivonitko VV; Sagdeev RZ
    J Phys Chem B; 2008 Jan; 112(4):1170-6. PubMed ID: 18173259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration-driven instability in the chlorite-tetrathionate reaction.
    Viranyi Z; Horvath D; Tóth A
    J Phys Chem A; 2006 Mar; 110(10):3614-8. PubMed ID: 16526642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional convection-driven fronts of the exothermic chlorite-tetrathionate reaction.
    Schuszter G; Pótári G; Horváth D; Tóth Á
    Chaos; 2015 Jun; 25(6):064501. PubMed ID: 26117124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heads and tails of buoyant autocatalytic balls.
    Rogers MC; Morris SW
    Chaos; 2012 Sep; 22(3):037110. PubMed ID: 23020501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density fingering of an exothermic autocatalytic reaction.
    Bánsági T; Horváth D; Tóth A; Yang J; Kalliadasis S; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):055301. PubMed ID: 14682835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of convective patterns in reaction fronts: a comparison of three models.
    Vasquez DA; Coroian DI
    Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern of reaction diffusion fronts in laminar flows.
    Leconte M; Martin J; Rakotomalala N; Salin D
    Phys Rev Lett; 2003 Mar; 90(12):128302. PubMed ID: 12688909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a constant electric field on the diffusional instability of cubic autocatalytic reaction fronts.
    D'Hernoncourt J; De Wit A; Merkin JH
    J Chem Phys; 2007 Mar; 126(10):104504. PubMed ID: 17362072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot spots in density fingering of exothermic autocatalytic chemical fronts.
    Gérard T; Tóth T; Grosfils P; Horváth D; De Wit A; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016322. PubMed ID: 23005540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.