BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

712 related articles for article (PubMed ID: 36995003)

  • 1. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1-min scan.
    Shieh CC; Gonzalez Y; Li B; Jia X; Rit S; Mory C; Riblett M; Hugo G; Zhang Y; Jiang Z; Liu X; Ren L; Keall P
    Med Phys; 2019 Sep; 46(9):3799-3811. PubMed ID: 31247134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adaptation and investigation of cone-beam CT reconstruction algorithms for horizontal rotation fixed-gantry scans of rabbits.
    Gardner M; Dillon O; Shieh CC; O'Brien R; Debrot E; Barber J; Ahern V; Bennett P; Heng SM; Corde S; Jackson M; Keall P
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33878747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A geometry-guided deep learning technique for CBCT reconstruction.
    Lu K; Ren L; Yin FF
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34261057
    [No Abstract]   [Full Text] [Related]  

  • 11. Image quality in thoracic 4D cone-beam CT: a sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing.
    Shieh CC; Kipritidis J; O'Brien RT; Kuncic Z; Keall PJ
    Med Phys; 2014 Apr; 41(4):041912. PubMed ID: 24694143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning enables time-efficient soft tissue enhancement in CBCT: Proof-of-concept study for dentomaxillofacial applications.
    Ylisiurua S; Sipola A; Nieminen MT; Brix MAK
    Phys Med; 2024 Jan; 117():103184. PubMed ID: 38016216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.
    Zhang H; Kruis M; Sonke JJ
    Phys Med Biol; 2017 Mar; 62(6):2254-2275. PubMed ID: 28140361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration.
    Riblett MJ; Christensen GE; Weiss E; Hugo GD
    Med Phys; 2018 Oct; 45(10):4471-4482. PubMed ID: 30118177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faster and lower dose imaging: evaluating adaptive, constant gantry velocity and angular separation in fast low-dose 4D cone beam CT imaging.
    Lau BKF; Dillon O; Vinod SK; O'Brien RT; Reynolds T
    Med Phys; 2024 Feb; 51(2):1364-1382. PubMed ID: 37427751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thoracic motion-compensated cone-beam computed tomography in under 20 seconds on a fast-rotating linac: A simulation study.
    Blake SJ; Dillon O; Byrne HL; O'Brien RT
    J Appl Clin Med Phys; 2023 Mar; 24(3):e13909. PubMed ID: 36680744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method.
    Jia X; Tian Z; Lou Y; Sonke JJ; Jiang SB
    Med Phys; 2012 Sep; 39(9):5592-602. PubMed ID: 22957625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reference-free learning-based similarity metric for motion compensation in cone-beam CT.
    Huang H; Siewerdsen JH; Zbijewski W; Weiss CR; Unberath M; Ehtiati T; Sisniega A
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35636391
    [No Abstract]   [Full Text] [Related]  

  • 20. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.