BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36995030)

  • 21. pH-activated nanoplatform for visualized photodynamic and ferroptosis synergistic therapy of tumors.
    Sun R; Ma W; Ling M; Tang C; Zhong M; Dai J; Zhu M; Cai X; Li G; Xu Q; Tang L; Yu Z; Peng Z
    J Control Release; 2022 Oct; 350():525-537. PubMed ID: 36055597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer.
    Zhang S; Yang L; Ling X; Shao P; Wang X; Edwards WB; Bai M
    Acta Biomater; 2015 Dec; 28():160-170. PubMed ID: 26432436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.
    Zeng L; Pan Y; Zou R; Zhang J; Tian Y; Teng Z; Wang S; Ren W; Xiao X; Zhang J; Zhang L; Li A; Lu G; Wu A
    Biomaterials; 2016 Oct; 103():116-127. PubMed ID: 27376560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triple-negative breast cancer treatment in xenograft models by bifunctional nanoprobes combined to photodynamic therapy.
    Dos Santos Jesus VP; Vieira PFA; Cintra RC; Sant'Anna LB; Zezell DM; Castilho ML; Raniero L
    Photodiagnosis Photodyn Ther; 2022 Jun; 38():102796. PubMed ID: 35263669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy.
    Dias LM; de Keijzer MJ; Ernst D; Sharifi F; de Klerk DJ; Kleijn TG; Desclos E; Kochan JA; de Haan LR; Franchi LP; van Wijk AC; Scutigliani EM; Fens MH; Barendrecht AD; Cavaco JEB; Huang X; Xu Y; Pan W; den Broeder MJ; Bogerd J; Schulz RW; Castricum KC; Thijssen VL; Cheng S; Ding B; Krawczyk PM; Heger M;
    J Photochem Photobiol B; 2022 Sep; 234():112500. PubMed ID: 35816857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells.
    Wang L; Zhang Y; Han Y; Zhang Q; Wen Z; Li H; Sun S; Chen X; Xu Y
    J Mater Chem B; 2021 Mar; 9(8):2001-2009. PubMed ID: 33537696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies.
    Kercher EM; Spring BQ
    Methods Mol Biol; 2022; 2451():185-201. PubMed ID: 35505019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor microenvironment-activated nanosystems with selenophenol substituted BODIPYs as photosensitizers for photodynamic therapy.
    Gao W; Li M; Xu G; Wang R; Shi B; Zhu T; Gao J; Gu X; Shi P; Zhao C
    Bioorg Med Chem Lett; 2020 Jan; 30(2):126854. PubMed ID: 31859157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers.
    Kaneko K; Acharya CR; Nagata H; Yang X; Hartman ZC; Hobeika A; Hughes PF; Haystead TAJ; Morse MA; Lyerly HK; Osada T
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36171008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session.
    Deken MM; Kijanka MM; Beltrán Hernández I; Slooter MD; de Bruijn HS; van Diest PJ; van Bergen En Henegouwen PMP; Lowik CWGM; Robinson DJ; Vahrmeijer AL; Oliveira S
    J Control Release; 2020 Jul; 323():269-281. PubMed ID: 32330574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme-Triggered Disassembly of Perylene Monoimide-based Nanoclusters for Activatable and Deep Photodynamic Therapy.
    Cai Y; Ni D; Cheng W; Ji C; Wang Y; Müllen K; Su Z; Liu Y; Chen C; Yin M
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):14014-14018. PubMed ID: 32363672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared light and redox dual-activatable nanosystems for synergistically cascaded cancer phototherapy with reduced skin photosensitization.
    Li Y; Hu D; Pan M; Qu Y; Chu B; Liao J; Zhou X; Liu Q; Cheng S; Chen Y; Wei Q; Qian Z
    Biomaterials; 2022 Sep; 288():121700. PubMed ID: 36049897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo.
    Jang B; Park JY; Tung CH; Kim IH; Choi Y
    ACS Nano; 2011 Feb; 5(2):1086-94. PubMed ID: 21244012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequentially Activatable Polypeptide Nanoparticles for Combinatory Photodynamic Chemotherapy of Breast Cancer.
    Zhang H; Pan J; Wang T; Lai Y; Liu X; Chen F; Xu L; Qu X; Hu X; Yu H
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39787-39798. PubMed ID: 36001127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors.
    Wu Y; Ding L; Zheng C; Li H; Wu M; Sun Y; Liu X; Zhang X; Zeng Y
    Acta Biomater; 2022 Nov; 153():419-430. PubMed ID: 36115655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of Electrochromic Materials as Activatable Probes for Molecular Imaging and Photodynamic Therapy.
    Wu L; Sun Y; Sugimoto K; Luo Z; Ishigaki Y; Pu K; Suzuki T; Chen HY; Ye D
    J Am Chem Soc; 2018 Nov; 140(47):16340-16352. PubMed ID: 30384600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy.
    Zhu H; Li J; Qi X; Chen P; Pu K
    Nano Lett; 2018 Jan; 18(1):586-594. PubMed ID: 29220576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo matrix metalloproteinase expression after photodynamic therapy with a liposomal formulation of aminolevulinic acid and its methyl ester.
    Osiecka B; Jurczyszyn K; Symonowicz K; Bronowicz A; Ostasiewicz P; Czapińska E; Hotowy K; Krzystek-Korpacka M; Gebarowska E; Izykowska I; Dziegiel P; Terlecki G; Ziółkowski P
    Cell Mol Biol Lett; 2010 Dec; 15(4):630-50. PubMed ID: 20865364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Fluorescence polarization used to derive cell membrane fluidity during photodynamic therapy].
    Wei RH; Huang YP; Li SS; Qi CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1827-9. PubMed ID: 16499056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondria-based photodynamic anti-cancer therapy.
    Morgan J; Oseroff AR
    Adv Drug Deliv Rev; 2001 Jul; 49(1-2):71-86. PubMed ID: 11377804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.