These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36995046)

  • 1. On the gelation of humins: from transient to covalent networks.
    Cerdan K; Gandara-Loe J; Arnauts G; Vangramberen V; Ginzburg A; Ameloot R; Koos E; Van Puyvelde P
    Soft Matter; 2023 Apr; 19(15):2801-2814. PubMed ID: 36995046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humins Blending in Thermoreversible Diels-Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics.
    Cerdan K; Brancart J; Roels E; Vanderborght B; Van Puyvelde P
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Furanic Humins-Based Non-Isocyanate Polyurethane (NIPU) Thermoset Wood Adhesives.
    Chen X; Pizzi A; Essawy H; Fredon E; Gerardin C; Guigo N; Sbirrazzuoli N
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33504084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of humins from food waste biorefinery for synthesis of biochar-supported Lewis acid catalysts.
    Xiong X; Yu IKM; Dutta S; Mašek O; Tsang DCW
    Sci Total Environ; 2021 Jun; 775():145851. PubMed ID: 33631592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and Chemorheological Analysis of Cross-Linking Reactions in Humins.
    Sangregorio A; Guigo N; Jong E; Sbirrazzuoli N
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31684112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.
    van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM
    ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humins from Biorefineries as Thermoreactive Macromolecular Systems.
    Sangregorio A; Guigo N; van der Waal JC; Sbirrazzuoli N
    ChemSusChem; 2018 Dec; 11(24):4246-4255. PubMed ID: 30338938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical matrices stabilized by enzymatically sensitive covalent crosslinks.
    Seal BL; Panitch A
    Acta Biomater; 2006 May; 2(3):241-51. PubMed ID: 16701884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furanic Humins from Biorefinery as Biobased Binder for Bitumen.
    Sangregorio A; Guigo N; Vincent L; de Jong E; Sbirrazzuoli N
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico-Chemical Properties and Principal Component Analysis of Biobased Thermosets Developed with Different Batches of Industrial Humins.
    Dinu R; Gaysinski M; de Jong E; Mija A
    Chempluschem; 2022 Jul; 87(7):e202200067. PubMed ID: 35502866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Formation, Characterization, and Oxidative Catalytic Valorization of Humins.
    Wassenberg A; Esser T; Poller MJ; Albert J
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.
    Copetti G; Grassi M; Lapasin R; Pricl S
    Glycoconj J; 1997 Dec; 14(8):951-61. PubMed ID: 9486428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Investigation into the Formation of Humins in Acid-Catalyzed Biomass Reactions.
    Velasco Calderón JC; Arora JS; Mushrif SH
    ACS Omega; 2022 Dec; 7(49):44786-44795. PubMed ID: 36530267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions.
    Divya PS; Nair S; Kunnikuruvan S
    Chemphyschem; 2022 Jun; 23(11):e202200057. PubMed ID: 35285118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling and Mechanical Properties of Polyacrylamide-Derivative Dual-Crosslink Hydrogels Having Metal-Ligand Coordination Bonds as Transient Crosslinks.
    Debertrand L; Zhao J; Creton C; Narita T
    Gels; 2021 Jun; 7(2):. PubMed ID: 34203901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-Crosslinked Rigid Foams Derived from Biorefinery Byproducts.
    Tosi P; van Klink GPM; Celzard A; Fierro V; Vincent L; de Jong E; Mija A
    ChemSusChem; 2018 Aug; 11(16):2797-2809. PubMed ID: 29956889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution Process and Controlled Synthesis of Humins with 5-Hydroxymethylfurfural (HMF) as Model Molecule.
    Shen H; Shan H; Liu L
    ChemSusChem; 2020 Feb; 13(3):513-519. PubMed ID: 31746122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Hydrotreatment of Humins to Bio-Oil in Methanol over Supported Metal Catalysts.
    Cheng Z; Saha B; Vlachos DG
    ChemSusChem; 2018 Oct; 11(20):3609-3617. PubMed ID: 30151873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of processing conditions on the texture and rheological properties of model acid gels and cream cheese.
    Brighenti M; Govindasamy-Lucey S; Jaeggi JJ; Johnson ME; Lucey JA
    J Dairy Sci; 2018 Aug; 101(8):6762-6775. PubMed ID: 29753471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.