These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36995130)

  • 1. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.
    Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L
    Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property.
    Kim NY; Leem YC; Hong SH; Park JH; Yim SY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6363-6373. PubMed ID: 30663309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy.
    Kim G; Kim M; Hyun C; Hong S; Ma KY; Shin HS; Lim H
    ACS Nano; 2016 Dec; 10(12):11156-11162. PubMed ID: 28024355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmonic coupling of Au nanoparticle arrays with ultrathin hexagonal boron nitride nanosheets for Raman enhancement.
    Gao J; Zhan W; Xiao Y; Zhu X; Gao W; Yin H
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Probing of the Electronic Structures of Single-Layer and Bilayer Graphene with a Hexagonal Boron Nitride Tunneling Barrier.
    Jung S; Myoung N; Park J; Jeong TY; Kim H; Watanabe K; Taniguchi T; Ha DH; Hwang C; Park HC
    Nano Lett; 2017 Jan; 17(1):206-213. PubMed ID: 28005378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions.
    Zhang C; Li D; Zhang G; Wang X; Mao L; Gan Q; Ding T; Xu H
    Sci Adv; 2022 Feb; 8(5):eabj9752. PubMed ID: 35119919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum tunneling effect on the surface enhanced Raman process in molecular systems.
    Ma W; Dai Q; Wei Y; Li L
    Opt Express; 2022 Feb; 30(4):4845-4855. PubMed ID: 35209457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation.
    Hajisalem G; Nezami MS; Gordon R
    Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for Preventing Electric Field Cancellation at Au-Au Nanogap.
    Ahn JG; Yeo G; Han Y; Park Y; Hong JW; Lim H
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):42176-42182. PubMed ID: 34435778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of the Real Plasmonic Field Transverse Distribution in a Nanocavity Using the Vibrational Stark Effect.
    Chen S; Xiao YH; Qin M; Zhou G; Dong R; Devasenathipathy R; Wu DY; Yang L
    J Phys Chem Lett; 2023 Feb; 14(7):1708-1713. PubMed ID: 36757268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the Heterogeneity of Longitudinal Plasmonic Field in a Nanocavity Using an Intercalated Two-Dimensional Atomic Crystal Probe with a ∼7 Å Resolution.
    Chen S; Weng S; Xiao YH; Li P; Qin M; Zhou G; Dong R; Yang L; Wu DY; Tian ZQ
    J Am Chem Soc; 2022 Jul; 144(29):13174-13183. PubMed ID: 35723445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution.
    Readman C; de Nijs B; Szabó I; Demetriadou A; Greenhalgh R; Durkan C; Rosta E; Scherman OA; Baumberg JJ
    Nano Lett; 2019 Mar; 19(3):2051-2058. PubMed ID: 30726095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
    Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I
    Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly based plasmonic nanoparticle array coupling with hexagonal boron nitride nanosheets.
    Gao W; Zhao Y; Yin H; Li H
    Nanoscale; 2017 Sep; 9(35):13004-13013. PubMed ID: 28832047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds.
    Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greatly Enhanced Emission from Spin Defects in Hexagonal Boron Nitride Enabled by a Low-Loss Plasmonic Nanocavity.
    Xu X; Solanki AB; Sychev D; Gao X; Peana S; Baburin AS; Pagadala K; Martin ZO; Chowdhury SN; Chen YP; Taniguchi T; Watanabe K; Rodionov IA; Kildishev AV; Li T; Upadhyaya P; Boltasseva A; Shalaev VM
    Nano Lett; 2023 Jan; 23(1):25-33. PubMed ID: 36383034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.