These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36995220)

  • 1. Transcriptome Analysis of Resistant and Susceptible Pecan (
    Chang J; Wang K; Zhang C; Han X; Zhang X; Ren H; Yao X
    J Agric Food Chem; 2023 Apr; 71(14):5812-5822. PubMed ID: 36995220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of
    Chang J; Zhai F; Zhang Y; Wang D; Shu J; Yao X
    Front Plant Sci; 2022; 13():1043750. PubMed ID: 36507420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic Analysis to Unravel Potential Pathways and Genes Involved in Pecan (
    Chen Y; Zhang S; Zhao Y; Mo Z; Wang W; Zhu C
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profile of pecan scab resistant and susceptible trees from a pecan provenance collection.
    Brungardt J; Alarcon Y; Shiller J; Young C; Monteros MJ; Randall JJ; Bock CH
    BMC Genomics; 2024 Feb; 25(1):180. PubMed ID: 38355402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First report of leaf spot on pecan (Carya illinoinensis) caused by Stemphylium eturmiunum in China.
    Li Y; Shi M; Mo Z; Zhai M; Shang C; Xuan J; Hu L
    Plant Dis; 2023 Mar; ():. PubMed ID: 36947839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipidomic and comparative transcriptomic analysis of fatty acid synthesis pathway in Carya illinoinensis embryo.
    Lyu YZ; Jiang H; Sun HN; Yang Y; Chao Y; Huang LB; Dong XY
    Tree Physiol; 2023 Sep; 43(9):1675-1690. PubMed ID: 37171624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What's in my Pot? Six Colletotrichum Species Causing Anthracnose in Brazilian Pecan Orchards.
    Poletto T; Fritsche Y; Fantinel VS; Muniz MFB; Harakava R; Stefenon VM
    Curr Microbiol; 2024 Feb; 81(4):94. PubMed ID: 38340150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of oxidase and hydrolase activities in pecan leaves elicited by black pecan aphid (Hemiptera: Aphididae) feeding.
    Chen Y; Ni X; Cottrell TE; Wood BW; Buntin GD
    J Econ Entomol; 2009 Jun; 102(3):1262-9. PubMed ID: 19610447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis reveals potential pathways associated with salt resistance in pecan (Carya illinoensis K. Koch).
    Zhang J; Jiao Y; Sharma A; Shen D; Wei B; Hong C; Zheng B; Pan C
    J Biotechnol; 2021 Mar; 330():17-26. PubMed ID: 33607173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis).
    Huang R; Huang Y; Sun Z; Huang J; Wang Z
    J Agric Food Chem; 2017 May; 65(20):4223-4236. PubMed ID: 28459558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated transcriptomic and lipidomic analysis provides key insights into lipid content changes during pecan (Carya illinoensis) fruit development.
    Yang R; Chen H; Zhang D; Zhang Q; Huang Y
    Plant Genome; 2024 Jun; 17(2):e20449. PubMed ID: 38602083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Detection of
    Achilonu CC; Gryzenhout M; Marais GJ; Ghosh S
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of lignocellulosic wastes of pecan (Carya illinoinensis) in the cultivation of Ganoderma lucidum.
    Ozcariz-Fermoselle MV; Fraile-Fabero R; Girbés-Juan T; Arce-Cervantes O; Oria de Rueda-Salgueiro JA; Azul AM
    Rev Iberoam Micol; 2018; 35(2):103-109. PubMed ID: 29731312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-length transcriptome analysis of pecan (Carya illinoinensis) kernels.
    Zhang C; Ren H; Yao X; Wang K; Chang J
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan (
    Yang Z; Qin T; Jin H; Wang J; Li C; Lim KJ; Wang Z
    J Agric Food Chem; 2023 Mar; 71(12):4901-4914. PubMed ID: 36938622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq Reveals Flavonoid Biosynthesis-Related Genes in Pecan ( Carya illinoinensis) Kernels.
    Zhang C; Yao X; Ren H; Chang J; Wang K
    J Agric Food Chem; 2019 Jan; 67(1):148-158. PubMed ID: 30563335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome-scale assembly reveals asymmetric paleo-subgenome evolution and targets for the acceleration of fungal resistance breeding in the nut crop, pecan.
    Xiao L; Yu M; Zhang Y; Hu J; Zhang R; Wang J; Guo H; Zhang H; Guo X; Deng T; Lv S; Li X; Huang J; Fan G
    Plant Commun; 2021 Nov; 2(6):100247. PubMed ID: 34778752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycorrhization of pecan (Carya illinoinensis) with black truffles: Tuber melanosporum and Tuber brumale.
    Marozzi G; Sánchez S; Benucci GM; Bonito G; Falini LB; Albertini E; Donnini D
    Mycorrhiza; 2017 Apr; 27(3):303-309. PubMed ID: 27838857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorotic feeding injury by the black pecan aphid (hemiptera: aphididae) to pecan foliage promotes aphid settling and nymphal development.
    Cottrell TE; Wood BW; Ni X
    Environ Entomol; 2009 Apr; 38(2):411-6. PubMed ID: 19389290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Characterization of Three
    Zhang C; Yao X; Ren H; Wang K; Chang J
    Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31216753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.