These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36995248)

  • 1. Migrating from Invasive to Noninvasive Techniques for Enhanced Leaf Chlorophyll Content Estimations Efficiency.
    Kandpal KC; Kumar A
    Crit Rev Anal Chem; 2024; 54(7):2583-2598. PubMed ID: 36995248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms.
    Yamashita H; Sonobe R; Hirono Y; Morita A; Ikka T
    Sci Rep; 2020 Oct; 10(1):17360. PubMed ID: 33060629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Inversion of vegetation canopy's chlorophyll content based on airborne hyperspectral image].
    Li MZ; Zhao XH; Liu Y; Lu W; Dong S; Meng L
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):177-82. PubMed ID: 23718007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [MTCARI: A kind of vegetation index monitoring vegetation leaf chlorophyll content based on hyperspectral remote sensing].
    Meng QY; Dong H; Qin QM; Wang JL; Zhao JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Aug; 32(8):2218-22. PubMed ID: 23156785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data.
    Barnes ML; Breshears DD; Law DJ; van Leeuwen WJD; Monson RK; Fojtik AC; Barron-Gafford GA; Moore DJP
    PLoS One; 2017; 12(12):e0189539. PubMed ID: 29281709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods.
    Guo Y; Yin G; Sun H; Wang H; Chen S; Senthilnath J; Wang J; Fu Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Correlation analysis of simulated MODIS vegetation indices and rice leaf area index and leaf chlorophyll content].
    Cheng Q; Huang J; Wang R; Tang Y
    Ying Yong Sheng Tai Xue Bao; 2004 Aug; 15(8):1363-7. PubMed ID: 15573989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping.
    Koh JCO; Banerjee BP; Spangenberg G; Kant S
    New Phytol; 2022 Mar; 233(6):2659-2670. PubMed ID: 34997968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophyll content retrieval from hyperspectral remote sensing imagery.
    Yang X; Yu Y; Fan W
    Environ Monit Assess; 2015 Jul; 187(7):456. PubMed ID: 26095901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating leaf photosynthesis of C
    Tsujimoto K; Hikosaka K
    Photosynth Res; 2021 May; 148(1-2):33-46. PubMed ID: 33909221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance.
    Siedliska A; Baranowski P; Pastuszka-Woźniak J; Zubik M; Krzyszczak J
    BMC Plant Biol; 2021 Jan; 21(1):28. PubMed ID: 33413120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation.
    Inoue Y; Guérif M; Baret F; Skidmore A; Gitelson A; Schlerf M; Darvishzadeh R; Olioso A
    Plant Cell Environ; 2016 Dec; 39(12):2609-2623. PubMed ID: 27650474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging.
    Zou X; Shi J; Hao L; Zhao J; Mao H; Chen Z; Li Y; Holmes M
    Anal Chim Acta; 2011 Nov; 706(1):105-12. PubMed ID: 21995916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest].
    Du HQ; Ge HL; Fan WY; Jin W; Zhou YF; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3033-7. PubMed ID: 20101980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset.
    Van Wittenberghe S; Verrelst J; Rivera JP; Alonso L; Moreno J; Samson R
    J Photochem Photobiol B; 2014 May; 134():37-48. PubMed ID: 24792473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms.
    Sonobe R; Hirono Y; Oi A
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32192044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.