These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36995279)

  • 1. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.
    Hedrick TL; Robinson AK
    Biol Lett; 2010 Jun; 6(3):422-5. PubMed ID: 20181557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of moth flight posture is mediated by wing mechanosensory feedback.
    Dickerson BH; Aldworth ZN; Daniel TL
    J Exp Biol; 2014 Jul; 217(Pt 13):2301-8. PubMed ID: 24737754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
    Cheng B; Deng X; Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4092-106. PubMed ID: 22116752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular control of free-flight yaw turns in the hawkmoth Manduca sexta.
    Springthorpe D; Fernández MJ; Hedrick TL
    J Exp Biol; 2012 May; 215(Pt 10):1766-74. PubMed ID: 22539744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular and biomechanical compensation for wing asymmetry in insect hovering flight.
    Fernández MJ; Springthorpe D; Hedrick TL
    J Exp Biol; 2012 Oct; 215(Pt 20):3631-8. PubMed ID: 22771747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hawkmoth wingbeat is not at resonance.
    Gau J; Wold ES; Lynch J; Gravish N; Sponberg S
    Biol Lett; 2022 May; 18(5):20220063. PubMed ID: 35611583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.
    Kim JK; Han JS; Lee JS; Han JH
    Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta.
    Frye MA
    J Exp Biol; 2001 Nov; 204(Pt 21):3683-91. PubMed ID: 11719532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths.
    Gau J; Gemilere R; Fm Subteam LV; Lynch J; Gravish N; Sponberg S
    Proc Biol Sci; 2021 May; 288(1951):20210352. PubMed ID: 34034520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.