BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36995317)

  • 1. BK channels of five different subunit combinations underlie the de novo KCNMA1 G375R channelopathy.
    Geng Y; Li P; Butler A; Wang B; Salkoff L; Magleby KL
    J Gen Physiol; 2023 May; 155(5):. PubMed ID: 36995317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative gain-of-function effects of the
    Moldenhauer HJ; Matychak KK; Meredith AL
    J Neurophysiol; 2020 Feb; 123(2):560-570. PubMed ID: 31851553
    [No Abstract]   [Full Text] [Related]  

  • 3. BK channel properties correlate with neurobehavioral severity in three
    Park SM; Roache CE; Iffland PH; Moldenhauer HJ; Matychak KK; Plante AE; Lieberman AG; Crino PB; Meredith A
    Elife; 2022 Jul; 11():. PubMed ID: 35819138
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Bailey CS; Moldenhauer HJ; Park SM; Keros S; Meredith AL
    J Gen Physiol; 2019 Oct; 151(10):1173-1189. PubMed ID: 31427379
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification and functional analysis of two new de novo KCNMA1 variants associated with Liang-Wang syndrome.
    Liang L; Liu H; Bartholdi D; van Haeringen A; Fernandez-Jaén A; Peeters EEA; Xiong H; Bai X; Xu C; Ke T; Wang QK
    Acta Physiol (Oxf); 2022 May; 235(1):e13800. PubMed ID: 35156297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BK Channelopathies and
    Meredith AL
    Annu Rev Physiol; 2024 Feb; 86():277-300. PubMed ID: 37906945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes.
    Liang L; Li X; Moutton S; Schrier Vergano SA; Cogné B; Saint-Martin A; Hurst ACE; Hu Y; Bodamer O; Thevenon J; Hung CY; Isidor B; Gerard B; Rega A; Nambot S; Lehalle D; Duffourd Y; Thauvin-Robinet C; Faivre L; Bézieau S; Dure LS; Helbling DC; Bick D; Xu C; Chen Q; Mancini GMS; Vitobello A; Wang QK
    Hum Mol Genet; 2019 Sep; 28(17):2937-2951. PubMed ID: 31152168
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Duncan PJ; Bi D; McClafferty H; Chen L; Tian L; Shipston MJ
    J Biol Chem; 2019 Aug; 294(32):12066-12076. PubMed ID: 31213527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives.
    Maqoud F; Cetrone M; Mele A; Tricarico D
    Physiol Genomics; 2017 Jun; 49(6):306-317. PubMed ID: 28455309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease-associated KCNMA1 variants decrease circadian clock robustness in channelopathy mouse models.
    Dinsdale RL; Roache CE; Meredith AL
    J Gen Physiol; 2023 Nov; 155(11):. PubMed ID: 37728576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. {beta} subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia.
    Lee US; Cui J
    J Physiol; 2009 Apr; 587(Pt 7):1481-98. PubMed ID: 19204046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block.
    Carvacho I; Gonzalez W; Torres YP; Brauchi S; Alvarez O; Gonzalez-Nilo FD; Latorre R
    J Gen Physiol; 2008 Feb; 131(2):147-61. PubMed ID: 18227273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of beta4 subunit modulation of BK channels.
    Wang B; Rothberg BS; Brenner R
    J Gen Physiol; 2006 Apr; 127(4):449-65. PubMed ID: 16567466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splicing of the rSlo gene affects the molecular composition and drug response of Ca2+-activated K+ channels in skeletal muscle.
    Dinardo MM; Camerino G; Mele A; Latorre R; Conte Camerino D; Tricarico D
    PLoS One; 2012; 7(7):e40235. PubMed ID: 22808126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymicrogyria in a child with KCNMA1-related channelopathy.
    Graber D; Imagawa E; Miyake N; Matsumoto N; Miyatake S; Graber M; Isidor B
    Brain Dev; 2022 Feb; 44(2):173-177. PubMed ID: 34674900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels.
    Romanenko VG; Thompson J; Begenisich T
    Channels (Austin); 2010; 4(4):278-88. PubMed ID: 20519930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of large-conductance calcium-activated potassium channels promotes vascular remodelling through the CTRP7-mediated PI3K/Akt signaling pathway.
    Bi J; Duan Y; Wang M; He C; Li X; Zhang X; Tao Y; Du Y; Liu H
    Acta Biochim Biophys Sin (Shanghai); 2022 Dec; 54(12):1-11. PubMed ID: 36514218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-conductance calcium-activated potassium channel haploinsufficiency leads to sensory deficits in the visual system: a case report.
    Perche O; Lesne F; Patat A; Raab S; Twyman R; Ring RH; Briault S
    J Med Case Rep; 2022 May; 16(1):180. PubMed ID: 35509069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells.
    Xia XM; Ding JP; Lingle CJ
    J Neurosci; 1999 Jul; 19(13):5255-64. PubMed ID: 10377337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttranscriptional and Posttranslational Regulation of BK Channels.
    Shipston MJ; Tian L
    Int Rev Neurobiol; 2016; 128():91-126. PubMed ID: 27238262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.