These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36995588)

  • 1. Measuring Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Muscle Stem Cells Using a Seahorse Analyzer: Applicability for Aging Studies.
    Hong X; Muñoz-Cánoves P
    Methods Mol Biol; 2023; 2640():73-88. PubMed ID: 36995588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Use of Seahorse XF Assays to Interrogate Real-Time Energy Metabolism in Cancer Cell Lines.
    Caines JK; Barnes DA; Berry MD
    Methods Mol Biol; 2022; 2508():225-234. PubMed ID: 35737244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells.
    Zhang J; Zhang Q
    Methods Mol Biol; 2019; 1928():353-363. PubMed ID: 30725464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Throughput Screening of Mitochondrial Bioenergetics in Myoblasts and Differentiated Myotubes.
    Takeda K; Takemasa T; Fujita R
    Methods Mol Biol; 2023; 2640():89-98. PubMed ID: 36995589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
    Wei C; Heitmeier M; Hruz PW; Shanmugam M
    Methods Mol Biol; 2018; 1713():69-75. PubMed ID: 29218518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies.
    Perdiguero E; Moiseeva V; Muñoz-Cánoves P
    Methods Mol Biol; 2019; 2045():13-23. PubMed ID: 30771188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Assessment of Mitochondrial Function in Cytotrophoblast and Syncytialized Trophoblast Cells Using the Seahorse XFe24 Extracellular Flux Analyzer.
    Walker OS; May LL; Raha S
    Methods Mol Biol; 2024; 2728():137-147. PubMed ID: 38019398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Role of RARβ Signaling on Cellular Metabolism in Melanoma Using the Seahorse XF Analyzer.
    Dahl C; Guldberg P; Abildgaard C
    Methods Mol Biol; 2019; 2019():171-180. PubMed ID: 31359396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Assessment of Mitochondrial Toxicity in HepG2 Cells Using the Seahorse Extracellular Flux Analyzer.
    Espinosa JA; Pohan G; Arkin MR; Markossian S
    Curr Protoc; 2021 Mar; 1(3):e75. PubMed ID: 33735523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexing Seahorse XF
    K Soman S; Swain M; Dagda RK
    Methods Mol Biol; 2022; 2497():349-362. PubMed ID: 35771457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for pulmonary research: assessment of bioenergetic function at the air-liquid interface.
    Xu W; Janocha AJ; Leahy RA; Klatte R; Dudzinski D; Mavrakis LA; Comhair SA; Lauer ME; Cotton CU; Erzurum SC
    Redox Biol; 2014; 2():513-9. PubMed ID: 24624341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Mitochondrial Substrate Utilization in Skeletal Muscle Stem Cells.
    Ly CH; Ryall JG
    Methods Mol Biol; 2017; 1668():61-73. PubMed ID: 28842902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergetic profile experiment using C2C12 myoblast cells.
    Nicholls DG; Darley-Usmar VM; Wu M; Jensen PB; Rogers GW; Ferrick DA
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21189469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for Mitochondria and Mitophagy Flux Analyses in Stem Cells of Resting and Regenerating Skeletal Muscle.
    García-Prat L; Martínez-Vicente M; Muñoz-Cánoves P
    Methods Mol Biol; 2016; 1460():223-40. PubMed ID: 27492176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cell aging in the skeletal muscle: The importance of communication.
    Hong X; Campanario S; Ramírez-Pardo I; Grima-Terrén M; Isern J; Muñoz-Cánoves P
    Ageing Res Rev; 2022 Jan; 73():101528. PubMed ID: 34818593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle aging - Stem cells in the spotlight.
    Henze H; Jung MJ; Ahrens HE; Steiner S; von Maltzahn J
    Mech Ageing Dev; 2020 Jul; 189():111283. PubMed ID: 32544406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Analysis of Energy Metabolism in Bone-Marrow Mesenchymal Stromal Cells.
    Bourgeais J; Hérault O
    Methods Mol Biol; 2021; 2308():59-70. PubMed ID: 34057714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.