BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36995603)

  • 1. In Vivo Investigation of Gene Function in Muscle Stem Cells by CRISPR/Cas9-Mediated Genome Editing.
    He L; He Z; Li Y; Sun H; Wang H
    Methods Mol Biol; 2023; 2640():287-311. PubMed ID: 36995603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9/AAV9-mediated in vivo editing identifies MYC regulation of 3D genome in skeletal muscle stem cell.
    He L; Ding Y; Zhao Y; So KK; Peng XL; Li Y; Yuan J; He Z; Chen X; Sun H; Wang H
    Stem Cell Reports; 2021 Oct; 16(10):2442-2458. PubMed ID: 34534448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida).
    Wang C; Li Y; Wang N; Yu Q; Li Y; Gao J; Zhou X; Ma N
    J Integr Plant Biol; 2023 Apr; 65(4):895-899. PubMed ID: 36460630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing.
    Su L; Shi C; Huang X; Wang Y; Li G
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33167309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission.
    Peng C; Yan Y; Kim VJ; Engle SE; Berry JN; McIntosh JM; Neve RL; Drenan RM
    Eur J Neurosci; 2019 Aug; 50(3):2224-2238. PubMed ID: 29779223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and highly efficient method for multi-allelic CRISPR-Cas9 editing in primary cell cultures.
    Hoellerbauer P; Kufeld M; Arora S; Wu HJ; Feldman HM; Paddison PJ
    Cancer Rep (Hoboken); 2020 Oct; 3(5):e1269. PubMed ID: 32721120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing by CRISPR/Cas9 in Polyploids.
    Sánchez-Gómez C; Posé D; Martín-Pizarro C
    Methods Mol Biol; 2023; 2545():459-473. PubMed ID: 36720828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo.
    Cai M; Si Y; Zhang J; Tian Z; Du S
    Mar Biotechnol (NY); 2018 Apr; 20(2):168-181. PubMed ID: 29374849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles.
    Cai W; Luo T; Mao L; Wang M
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8596-8606. PubMed ID: 32385892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications.
    Huang K; Zapata D; Tang Y; Teng Y; Li Y
    Biomaterials; 2022 Dec; 291():121876. PubMed ID: 36334354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9.
    Thürkauf M; Lin S; Oliveri F; Grimm D; Platt RJ; Rüegg MA
    Nat Commun; 2023 Sep; 14(1):6116. PubMed ID: 37777530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing in Citrus Tree with CRISPR/Cas9.
    Jia H; Zou X; Orbovic V; Wang N
    Methods Mol Biol; 2019; 1917():235-241. PubMed ID: 30610640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.