BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36995612)

  • 1. Visualization of RNA Transcripts in Muscle Stem Cells Using Single-Molecule Fluorescence In Situ Hybridization.
    Yue L; Cheung TH
    Methods Mol Biol; 2023; 2640():445-452. PubMed ID: 36995612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized protocol for single-molecule RNA FISH to visualize gene expression in
    Patel HP; Brouwer I; Lenstra TL
    STAR Protoc; 2021 Sep; 2(3):100647. PubMed ID: 34278333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Molecule Fluorescence In Situ Hybridization (smFISH) Analysis in Budding Yeast Vegetative Growth and Meiosis.
    Chen J; McSwiggen D; Ünal E
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FISH-quant v2: a scalable and modular tool for smFISH image analysis.
    Imbert A; Ouyang W; Safieddine A; Coleno E; Zimmer C; Bertrand E; Walter T; Mueller F
    RNA; 2022 Jun; 28(6):786-795. PubMed ID: 35347070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization and Quantification of Subcellular RNA Localization Using Single-Molecule RNA Fluorescence In Situ Hybridization.
    Arora A; Goering R; Velez PT; Taliaferro JM
    Methods Mol Biol; 2022; 2404():247-266. PubMed ID: 34694613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Gene Expression Patterns and RNA Localization by Fluorescence in Situ Hybridization in Whole Mount Drosophila Testes.
    Fingerhut JM; Yamashita YM
    Methods Mol Biol; 2023; 2666():15-28. PubMed ID: 37166654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH.
    Savulescu AF; Brackin R; Bouilhol E; Dartigues B; Warrell JH; Pimentel MR; Beaume N; Fortunato IC; Dallongeville S; Boulle M; Soueidan H; Agou F; Schmoranzer J; Olivo-Marin JC; Franco CA; Gomes ER; Nikolski M; Mhlanga MM
    Cell Rep Methods; 2021 Sep; 1(5):100068. PubMed ID: 35474672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells.
    Cui Y; Hu D; Markillie LM; Chrisler WB; Gaffrey MJ; Ansong C; Sussel L; Orr G
    Nucleic Acids Res; 2018 Jan; 46(2):e7. PubMed ID: 29040675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reference genes for quantitative Arabidopsis single molecule RNA fluorescence in situ hybridization.
    Duncan S; Johansson HE; Ding Y
    J Exp Bot; 2023 Apr; 74(7):2405-2415. PubMed ID: 36579724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Fluorescence In Situ Hybridization for Spatial Detection of mRNAs in Sections of Mammalian Testes.
    Diaz VD; Hermann BP
    Methods Mol Biol; 2023; 2656():21-35. PubMed ID: 37249865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging.
    Safieddine A; Coleno E; Lionneton F; Traboulsi AM; Salloum S; Lecellier CH; Gostan T; Georget V; Hassen-Khodja C; Imbert A; Mueller F; Walter T; Peter M; Bertrand E
    Nat Protoc; 2023 Jan; 18(1):157-187. PubMed ID: 36280749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis.
    Srivastava S; Gala HP; Mishra RK; Dhawan J
    Methods Mol Biol; 2018; 1686():215-239. PubMed ID: 29030824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and Automated Analysis of Single Transcripts at Subcellular Resolution in Zebrafish Embryos.
    Stapel LC; Broaddus C; Vastenhouw NL
    Methods Mol Biol; 2018; 1649():143-162. PubMed ID: 29130195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for Labeling Transcripts in Individual Escherichia coli Cells for Single-molecule Fluorescence In Situ Hybridization Experiments.
    Arbel-Goren R; Shapira Y; Stavans J
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as.
    Kocks C; Boltengagen A; Piwecka M; Rybak-Wolf A; Rajewsky N
    Methods Mol Biol; 2018; 1724():77-96. PubMed ID: 29322442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automation of Multiplexed RNAscope Single-Molecule Fluorescent In Situ Hybridization and Immunohistochemistry for Spatial Tissue Mapping.
    Roberts K; Bayraktar OA
    Methods Mol Biol; 2020; 2148():229-244. PubMed ID: 32394386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA fluorescence in situ hybridization for high-content screening.
    Querido E; Dekakra-Bellili L; Chartrand P
    Methods; 2017 Aug; 126():149-155. PubMed ID: 28694064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule RNA FISH in Whole-Mount Organoids.
    Borrelli C; Moor AE
    Methods Mol Biol; 2020; 2171():237-247. PubMed ID: 32705646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Labeling, and Application of Probes for RNA smFISH.
    Piskadlo E; Eichenberger BT; Giorgetti L; Chao JA
    Methods Mol Biol; 2022; 2537():173-183. PubMed ID: 35895264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules.
    Kwon S
    BMB Rep; 2013 Feb; 46(2):65-72. PubMed ID: 23433107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.