These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36995612)

  • 41. Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH.
    Lee C; Roberts SE; Gladfelter AS
    Methods; 2016 Apr; 98():124-133. PubMed ID: 26690072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detecting Circular RNAs by RNA Fluorescence In Situ Hybridization.
    Zirkel A; Papantonis A
    Methods Mol Biol; 2018; 1724():69-75. PubMed ID: 29322441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated detection and quantification of single RNAs at cellular resolution in zebrafish embryos.
    Stapel LC; Lombardot B; Broaddus C; Kainmueller D; Jug F; Myers EW; Vastenhouw NL
    Development; 2016 Feb; 143(3):540-6. PubMed ID: 26700682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whole-mount in situ hybridization using DIG-labeled probes in planarian.
    Rybak-Wolf A; Solana J
    Methods Mol Biol; 2014; 1211():41-51. PubMed ID: 25218375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA visualization in bacteria by fluorescence in situ hybridization.
    Russell JH; Keiler KC
    Methods Mol Biol; 2012; 905():87-95. PubMed ID: 22736000
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous Detection of mRNA and Protein in S. cerevisiae by Single-Molecule FISH and Immunofluorescence.
    Tutucci E; Singer RH
    Methods Mol Biol; 2020; 2166():51-69. PubMed ID: 32710403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-Molecule RNA In Situ Hybridization (smFISH) and Immunofluorescence (IF) in the Drosophila Egg Chamber.
    Bayer LV; Batish M; Formel SK; Bratu DP
    Methods Mol Biol; 2015; 1328():125-36. PubMed ID: 26324434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. QuantISH: RNA in situ hybridization image analysis framework for quantifying cell type-specific target RNA expression and variability.
    Jamalzadeh S; Häkkinen A; Andersson N; Huhtinen K; Laury A; Hietanen S; Hynninen J; Oikkonen J; Carpén O; Virtanen A; Hautaniemi S
    Lab Invest; 2022 Jul; 102(7):753-761. PubMed ID: 35169222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues.
    Maynard KR; Tippani M; Takahashi Y; Phan BN; Hyde TM; Jaffe AE; Martinowich K
    Nucleic Acids Res; 2020 Jun; 48(11):e66. PubMed ID: 32383753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-Molecule Fluorescent In Situ Hybridization (smFISH) for RNA Detection in Bacteria.
    Ciolli Mattioli C; Avraham R
    Methods Mol Biol; 2024; 2784():3-23. PubMed ID: 38502475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule resolution fluorescent in situ hybridization (smFISH) in the yeast S. cerevisiae.
    Rahman S; Zenklusen D
    Methods Mol Biol; 2013; 1042():33-46. PubMed ID: 23979998
    [TBL] [Abstract][Full Text] [Related]  

  • 52. mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation.
    Roy N; Sundar S; Pillai M; Patell-Socha F; Ganesh S; Aloysius A; Rumman M; Gala H; Hughes SM; Zammit PS; Dhawan J
    Skelet Muscle; 2021 Jul; 11(1):18. PubMed ID: 34238354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using Single Molecule mRNA Fluorescent in Situ Hybridization (RNA-FISH) to Quantify mRNAs in Individual Murine Oocytes and Embryos.
    Xie F; Timme KA; Wood JR
    Sci Rep; 2018 May; 8(1):7930. PubMed ID: 29785002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescence In Situ Imaging of Dendritic RNAs at Single-Molecule Resolution.
    Batish M; Tyagi S
    Curr Protoc Neurosci; 2019 Sep; 89(1):e79. PubMed ID: 31532916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses.
    Liu S; Punthambaker S; Iyer EPR; Ferrante T; Goodwin D; Fürth D; Pawlowski AC; Jindal K; Tam JM; Mifflin L; Alon S; Sinha A; Wassie AT; Chen F; Cheng A; Willocq V; Meyer K; Ling KH; Camplisson CK; Kohman RE; Aach J; Lee JH; Yankner BA; Boyden ES; Church GM
    Nucleic Acids Res; 2021 Jun; 49(10):e58. PubMed ID: 33693773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthetic recording and in situ readout of lineage information in single cells.
    Frieda KL; Linton JM; Hormoz S; Choi J; Chow KK; Singer ZS; Budde MW; Elowitz MB; Cai L
    Nature; 2017 Jan; 541(7635):107-111. PubMed ID: 27869821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visualization of lncRNA by single-molecule fluorescence in situ hybridization.
    Dunagin M; Cabili MN; Rinn J; Raj A
    Methods Mol Biol; 2015; 1262():3-19. PubMed ID: 25555572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous Detection of RNAs and Proteins with Subcellular Resolution.
    Kwon S; Chin K; Nederlof M
    Methods Mol Biol; 2020; 2161():59-73. PubMed ID: 32681506
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of mRNA Subcellular Distribution in Collective Cell Migration.
    Bradbury JJ; Lovegrove HE; Giralt-Pujol M; Herbert SP
    Methods Mol Biol; 2023; 2608():389-407. PubMed ID: 36653719
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Validating transcripts with probes and imaging technology.
    Itzkovitz S; van Oudenaarden A
    Nat Methods; 2011 Apr; 8(4 Suppl):S12-9. PubMed ID: 21451512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.