These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36995680)
21. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Li P; Estrada JL; Burlak C; Montgomery J; Butler JR; Santos RM; Wang ZY; Paris LL; Blankenship RL; Downey SM; Tector M; Tector AJ Xenotransplantation; 2015; 22(1):20-31. PubMed ID: 25178170 [TBL] [Abstract][Full Text] [Related]
22. Genome Editing of Pig. Watanabe M; Nagashima H Methods Mol Biol; 2023; 2637():269-292. PubMed ID: 36773154 [TBL] [Abstract][Full Text] [Related]
23. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Kang JT; Cho B; Ryu J; Ray C; Lee EJ; Yun YJ; Ahn S; Lee J; Ji DY; Jue N; Clark-Deener S; Lee K; Park KW Reprod Biol Endocrinol; 2016 Nov; 14(1):74. PubMed ID: 27809915 [TBL] [Abstract][Full Text] [Related]
24. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Yin Y; Hao H; Xu X; Shen L; Wu W; Zhang J; Li Q Lipids Health Dis; 2019 May; 18(1):122. PubMed ID: 31138220 [TBL] [Abstract][Full Text] [Related]
25. Current progress of genome editing in livestock. Lee K; Uh K; Farrell K Theriogenology; 2020 Jul; 150():229-235. PubMed ID: 32000993 [TBL] [Abstract][Full Text] [Related]
26. Genome Editing of Pig. Watanabe M; Nagashima H Methods Mol Biol; 2017; 1630():121-139. PubMed ID: 28643255 [TBL] [Abstract][Full Text] [Related]
27. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Current applications of SCNT in advanced breeding and genome editing in livestock. Galli C; Lazzari G Reproduction; 2021 Jun; 162(1):F23-F32. PubMed ID: 33852430 [TBL] [Abstract][Full Text] [Related]
29. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System. Sato M; Miyoshi K; Nakamura S; Ohtsuka M; Sakurai T; Watanabe S; Kawaguchi H; Tanimoto A Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207527 [TBL] [Abstract][Full Text] [Related]
30. Effects of concentration of CRISPR/Cas9 components on genetic mosaicism in cytoplasmic microinjected porcine embryos. Tanihara F; Hirata M; Nguyen NT; LE QA; Hirano T; Otoi T J Reprod Dev; 2019 Jun; 65(3):209-214. PubMed ID: 30726783 [TBL] [Abstract][Full Text] [Related]
31. GEEP Method: An Optimized Electroporation-Mediated Gene Editing Approach for Establishment of Knockout Pig Lines. Tanihara F; Hirata M; Otoi T Methods Mol Biol; 2023; 2637():293-300. PubMed ID: 36773155 [TBL] [Abstract][Full Text] [Related]
32. Oocyte electroporation prior to in vitro fertilization is an efficient method to generate single, double, and multiple knockout porcine embryos of interest in biomedicine and animal production. Navarro-Serna S; Piñeiro-Silva C; Fernández-Martín I; Dehesa-Etxebeste M; López de Munain A; Gadea J Theriogenology; 2024 Apr; 218():111-118. PubMed ID: 38320372 [TBL] [Abstract][Full Text] [Related]
33. Generation of Marker-Free Huang J; Wang A; Huang C; Sun Y; Song B; Zhou R; Li L Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32824735 [TBL] [Abstract][Full Text] [Related]
34. Production of Four-Gene (GTKO/hCD55/hTBM/hCD39)-Edited Donor Pigs and Kidney Xenotransplantation. Yang C; Wei Y; Li X; Xu K; Huo X; Chen G; Zhao H; Wang J; Wei T; Qing Y; Guo J; Zhao H; Zhang X; Jiao D; Xiong Z; Jamal MA; Zhao HY; Wei HJ Xenotransplantation; 2024; 31(4):e12881. PubMed ID: 39185796 [TBL] [Abstract][Full Text] [Related]
35. Generation of Calpain-3 knock-out porcine embryos by CRISPR-Cas9 electroporation and intracytoplasmic microinjection of oocytes before insemination. Navarro-Serna S; Dehesa-Etxebeste M; Piñeiro-Silva C; Romar R; Lopes JS; López de Munaín A; Gadea J Theriogenology; 2022 Jul; 186():175-184. PubMed ID: 35500431 [TBL] [Abstract][Full Text] [Related]
36. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Hyun S; Lee G; Kim D; Kim H; Lee S; Nam D; Jeong Y; Kim S; Yeom S; Kang S; Han J; Lee B; Hwang W Biol Reprod; 2003 Sep; 69(3):1060-8. PubMed ID: 12773429 [TBL] [Abstract][Full Text] [Related]
37. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. Chen F; Wang Y; Yuan Y; Zhang W; Ren Z; Jin Y; Liu X; Xiong Q; Chen Q; Zhang M; Li X; Zhao L; Li Z; Wu Z; Zhang Y; Hu F; Huang J; Li R; Dai Y J Genet Genomics; 2015 Aug; 42(8):437-44. PubMed ID: 26336800 [TBL] [Abstract][Full Text] [Related]
38. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection. Xu K; Zhang X; Liu Z; Ruan J; Xu C; Che J; Fan Z; Mu Y; Li K Sci China Life Sci; 2022 Aug; 65(8):1535-1546. PubMed ID: 35122622 [TBL] [Abstract][Full Text] [Related]
39. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Kang JT; Ryu J; Cho B; Lee EJ; Yun YJ; Ahn S; Lee J; Ji DY; Lee K; Park KW Reprod Domest Anim; 2016 Dec; 51(6):970-978. PubMed ID: 27696566 [TBL] [Abstract][Full Text] [Related]
40. Zygote Microinjection for Creating Gene Cassette Knock-in and Flox Alleles in Mice. Tanimoto Y; Mikami N; Ishida M; Iki N; Kato K; Sugiyama F; Takahashi S; Mizuno S J Vis Exp; 2022 Jun; (184):. PubMed ID: 35815994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]