These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36995741)
1. Detecting Hexafluoroisopropanol Using Soft Chemical Ionization Mass Spectrometry and Analytical Applications to Exhaled Breath. Weiss F; Chawaguta A; Tolpeit M; Volk V; Schiller A; Ruzsanyi V; Hillinger P; Lederer W; Märk TD; Mayhew CA J Am Soc Mass Spectrom; 2023 May; 34(5):958-968. PubMed ID: 36995741 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic Switching and Selection of H Španěl P; Spesyvyi A; Smith D Anal Chem; 2019 Apr; 91(8):5380-5388. PubMed ID: 30869870 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Non-Invasive Monitoring of Short-Chain Fatty Acids in Exhaled Breath. Meurs J; Sakkoula E; Cristescu SM Front Chem; 2022; 10():853541. PubMed ID: 35844640 [TBL] [Abstract][Full Text] [Related]
4. Studies pertaining to the monitoring of volatile halogenated anaesthetics in breath by proton transfer reaction mass spectrometry. Malásková M; Olivenza-León D; Chellayah PD; Martini J; Lederer W; Ruzsanyi V; Unterkofler K; Mochalski P; Märk TD; Watts P; Mayhew CA J Breath Res; 2020 Feb; 14(2):026004. PubMed ID: 31796655 [TBL] [Abstract][Full Text] [Related]
5. Effects of humidity, CO Trefz P; Schubert JK; Miekisch W J Breath Res; 2018 Mar; 12(2):026016. PubMed ID: 29199640 [TBL] [Abstract][Full Text] [Related]
6. Elimination characteristics of post-operative isoflurane levels in alveolar exhaled breath via PTR-MS analysis. Fernández Del Río R; O'Hara ME; Pemberton P; Whitehouse T; Mayhew CA J Breath Res; 2016 Oct; 10(4):046006. PubMed ID: 27732571 [TBL] [Abstract][Full Text] [Related]
7. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. Malásková M; Henderson B; Chellayah PD; Ruzsanyi V; Mochalski P; Cristescu SM; Mayhew CA J Breath Res; 2019 Jul; 13(4):046009. PubMed ID: 31163413 [TBL] [Abstract][Full Text] [Related]
8. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer. Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1683-90. PubMed ID: 24975248 [TBL] [Abstract][Full Text] [Related]
9. Compendium of the Reactions of H Malásková M; Olivenza-León D; Piel F; Mochalski P; Sulzer P; Jürschik S; Mayhew CA; Märk TD Front Chem; 2019; 7():401. PubMed ID: 31263690 [TBL] [Abstract][Full Text] [Related]
10. The potential of NO Hegen O; Salazar Gómez JI; Schlögl R; Ruland H Mass Spectrom Rev; 2023; 42(5):1688-1726. PubMed ID: 35076949 [TBL] [Abstract][Full Text] [Related]
11. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath. Spesyvyi A; Smith D; Španěl P Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448 [TBL] [Abstract][Full Text] [Related]
12. Mass spectrometry for real-time quantitative breath analysis. Smith D; Španěl P; Herbig J; Beauchamp J J Breath Res; 2014 Jun; 8(2):027101. PubMed ID: 24682047 [TBL] [Abstract][Full Text] [Related]
13. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Dryahina K; Smith D; Spanel P Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601 [TBL] [Abstract][Full Text] [Related]
14. Online exhaled gas measurements for radiotherapy patients by proton transfer reaction mass spectrometry. Zou X; Zhou W; Shen C; Wang H; Lu Y; Wang H; Chu Y J Environ Radioact; 2016 Aug; 160():135-40. PubMed ID: 27209162 [TBL] [Abstract][Full Text] [Related]
15. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Spanĕl P; Smith D Eur J Mass Spectrom (Chichester); 2007; 13(1):77-82. PubMed ID: 17878543 [TBL] [Abstract][Full Text] [Related]
16. Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath. Spanĕl P; Smith D Med Biol Eng Comput; 1996 Nov; 34(6):409-19. PubMed ID: 9039741 [TBL] [Abstract][Full Text] [Related]
17. Direct detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry. Shestivska V; Antonowicz SS; Dryahina K; Kubišta J; Smith D; Španěl P Rapid Commun Mass Spectrom; 2015 Jun; 29(11):1069-79. PubMed ID: 26044275 [TBL] [Abstract][Full Text] [Related]
18. Extending PTR based breath analysis to real-time monitoring of reactive volatile organic compounds. Pugliese G; Trefz P; Brock B; Schubert JK; Miekisch W Analyst; 2019 Dec; 144(24):7359-7367. PubMed ID: 31663533 [TBL] [Abstract][Full Text] [Related]
19. Advances in proton transfer reaction mass spectrometry (PTR-MS): applications in exhaled breath analysis, food science, and atmospheric chemistry. Pleil JD; Hansel A; Beauchamp J J Breath Res; 2019 Jun; 13(3):039002. PubMed ID: 31085815 [TBL] [Abstract][Full Text] [Related]
20. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry. Smith D; Pysanenko A; Spanel P Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]