These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 36996110)
1. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Wu Z; Cui Y; Wang H; Wu H; Wan Y; Li B; Wang L; Pan S; Peng W; Dong A; Yuan Z; Jing M; Xu M; Luo M; Li Y Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2212387120. PubMed ID: 36996110 [TBL] [Abstract][Full Text] [Related]
2. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. Eltzschig HK; Abdulla P; Hoffman E; Hamilton KE; Daniels D; Schönfeld C; Löffler M; Reyes G; Duszenko M; Karhausen J; Robinson A; Westerman KA; Coe IR; Colgan SP J Exp Med; 2005 Dec; 202(11):1493-505. PubMed ID: 16330813 [TBL] [Abstract][Full Text] [Related]
3. Dopamine Release in Nucleus Accumbens Is under Tonic Inhibition by Adenosine A Roberts BM; Lambert E; Livesey JA; Wu Z; Li Y; Cragg SJ J Neurosci; 2022 Mar; 42(9):1738-1751. PubMed ID: 35042768 [TBL] [Abstract][Full Text] [Related]
4. The adenosine transporter, mENT1, is a target for adenosine receptor signaling and protein kinase Cepsilon in hypoxic and pharmacological preconditioning in the mouse cardiomyocyte cell line, HL-1. Chaudary N; Naydenova Z; Shuralyova I; Coe IR J Pharmacol Exp Ther; 2004 Sep; 310(3):1190-8. PubMed ID: 15131243 [TBL] [Abstract][Full Text] [Related]
5. N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium. Zamzow CR; Bose R; Parkinson FE Can J Physiol Pharmacol; 2009 Oct; 87(10):850-8. PubMed ID: 20052011 [TBL] [Abstract][Full Text] [Related]
6. Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. Ham M; Mizumori M; Watanabe C; Wang JH; Inoue T; Nakano T; Guth PH; Engel E; Kaunitz JD; Akiba Y J Pharmacol Exp Ther; 2010 Dec; 335(3):607-13. PubMed ID: 20805305 [TBL] [Abstract][Full Text] [Related]
7. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport. Kobayashi S; Zimmermann H; Millhorn DE J Neurochem; 2000 Feb; 74(2):621-32. PubMed ID: 10646513 [TBL] [Abstract][Full Text] [Related]
8. Molecular Characterization of Equilibrative Nucleoside Transporters in the Rat Carotid Body and Their Regulation by Chronic Hypoxia. Salman S; Nurse CA Adv Exp Med Biol; 2018; 1071():43-50. PubMed ID: 30357732 [TBL] [Abstract][Full Text] [Related]
10. Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. Robin E; Sabourin J; Marcillac F; Raddatz E J Mol Cell Cardiol; 2013 Oct; 63():14-25. PubMed ID: 23837961 [TBL] [Abstract][Full Text] [Related]
11. Role of the intracellular nucleoside transporter ENT3 in transmitter and high K+ stimulation of astrocytic ATP release investigated using siRNA against ENT3. Song D; Xu J; Bai Q; Cai L; Hertz L; Peng L ASN Neuro; 2014; 6(4):1759091414543439. PubMed ID: 25298788 [TBL] [Abstract][Full Text] [Related]
19. Insulin and glucose induced changes in expression level of nucleoside transporters and adenosine transport in rat T lymphocytes. Sakowicz M; Szutowicz A; Pawelczyk T Biochem Pharmacol; 2004 Oct; 68(7):1309-20. PubMed ID: 15345320 [TBL] [Abstract][Full Text] [Related]
20. Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II. Paes-de-Carvalho R; Dias BV; Martins RA; Pereira MR; Portugal CC; Lanfredi C Neurochem Int; 2005 May; 46(6):441-51. PubMed ID: 15769546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]