These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36996151)

  • 41. Optimization of robustness of interdependent network controllability by redundant design.
    Zhang Z; Yin Y; Zhang X; Liu L
    PLoS One; 2018; 13(2):e0192874. PubMed ID: 29438426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Constraint-based models for dominating protein interaction networks.
    Alofairi AA; Mabrouk E; Elsemman IE
    IET Syst Biol; 2021 Jul; 15(5):148-162. PubMed ID: 34048146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A computational exploration of resilience and evolvability of protein-protein interaction networks.
    Klein B; Holmér L; Smith KM; Johnson MM; Swain A; Stolp L; Teufel AI; Kleppe AS
    Commun Biol; 2021 Dec; 4(1):1352. PubMed ID: 34857859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural Target Controllability of Linear Networks.
    Czeizler E; Wu KC; Gratie C; Kanhaiya K; Petre I
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1217-1228. PubMed ID: 29994605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mining functional subgraphs from cancer protein-protein interaction networks.
    Shen R; Goonesekere NC; Guda C
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S2. PubMed ID: 23282132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of Multilayer Networks.
    Menichetti G; Dall'Asta L; Bianconi G
    Sci Rep; 2016 Feb; 6():20706. PubMed ID: 26869210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controllability of flow-conservation networks.
    Zhao C; Zeng A; Jiang R; Yuan Z; Wang WX
    Phys Rev E; 2017 Jul; 96(1-1):012314. PubMed ID: 29347124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural controllability of complex networks based on preferential matching.
    Zhang X; Lv T; Yang X; Zhang B
    PLoS One; 2014; 9(11):e112039. PubMed ID: 25375628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Algorithm to identify frequent coupled modules from two-layered network series: application to study transcription and splicing coupling.
    Li W; Dai C; Liu CC; Zhou XJ
    J Comput Biol; 2012 Jun; 19(6):710-30. PubMed ID: 22697243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B; Fan W; Liu J; Wu FX
    Brief Bioinform; 2014 Mar; 15(2):177-94. PubMed ID: 23780996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A dual controllability analysis of influenza virus-host protein-protein interaction networks for antiviral drug target discovery.
    Ackerman EE; Alcorn JF; Hase T; Shoemaker JE
    BMC Bioinformatics; 2019 Jun; 20(1):297. PubMed ID: 31159726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers.
    Dix A; Vlaic S; Guthke R; Linde J
    Clin Microbiol Infect; 2016 Jul; 22(7):600-6. PubMed ID: 27113568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Attack Vulnerability of Network Controllability.
    Lu ZM; Li XF
    PLoS One; 2016; 11(9):e0162289. PubMed ID: 27588941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global gene network exploration based on explainable artificial intelligence approach.
    Park H; Maruhashi K; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2020; 15(11):e0241508. PubMed ID: 33156825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Irrelevance of linear controllability to nonlinear dynamical networks.
    Jiang J; Lai YC
    Nat Commun; 2019 Sep; 10(1):3961. PubMed ID: 31481693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles.
    Yamaguchi E; Akutsu T; Nacher JC
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Target Controllability in Multilayer Networks via Minimum-Cost Maximum-Flow Method.
    Ding J; Wen C; Li G; Tu P; Ji D; Zou Y; Huang J
    IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):1949-1962. PubMed ID: 32530810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying protein complexes in PPI network using non-cooperative sequential game.
    Maulik U; Basu S; Ray S
    Sci Rep; 2017 Aug; 7(1):8410. PubMed ID: 28827597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.