BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36996253)

  • 1. A novel eukaryotic RdRP-dependent small RNA pathway represses antiviral immunity by controlling an ERK pathway component in the black-legged tick.
    Feng C; Torimaru K; Lim MYT; Chak LL; Shiimori M; Tsuji K; Tanaka T; Iida J; Okamura K
    PLoS One; 2023; 18(3):e0281195. PubMed ID: 36996253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses.
    Schnettler E; Tykalová H; Watson M; Sharma M; Sterken MG; Obbard DJ; Lewis SH; McFarlane M; Bell-Sakyi L; Barry G; Weisheit S; Best SM; Kuhn RJ; Pijlman GP; Chase-Topping ME; Gould EA; Grubhoffer L; Fazakerley JK; Kohl A
    Nucleic Acids Res; 2014 Aug; 42(14):9436-46. PubMed ID: 25053841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi reveals proteins for metabolism and protein processing associated with Langat virus infection in Ixodes scapularis (black-legged tick) ISE6 cells.
    Grabowski JM; Gulia-Nuss M; Kuhn RJ; Hill CA
    Parasit Vectors; 2017 Jan; 10(1):24. PubMed ID: 28086865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway.
    Vasale JJ; Gu W; Thivierge C; Batista PJ; Claycomb JM; Youngman EM; Duchaine TF; Mello CC; Conte D
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3582-7. PubMed ID: 20133583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis.
    Weisheit S; Villar M; Tykalová H; Popara M; Loecherbach J; Watson M; Růžek D; Grubhoffer L; de la Fuente J; Fazakerley JK; Bell-Sakyi L
    Parasit Vectors; 2015 Nov; 8():599. PubMed ID: 26582129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent sRNA transcriptome of the Lyme disease spirochete.
    Popitsch N; Bilusic I; Rescheneder P; Schroeder R; Lybecker M
    BMC Genomics; 2017 Jan; 18(1):28. PubMed ID: 28056764
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Coffman SR; Lu J; Guo X; Zhong J; Jiang H; Broitman-Maduro G; Li WX; Lu R; Maduro M; Ding SW
    mBio; 2017 Mar; 8(2):. PubMed ID: 28325765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic expression of small RNA populations in larch (Larix leptolepis).
    Zhang J; Wu T; Li L; Han S; Li X; Zhang S; Qi L
    Planta; 2013 Jan; 237(1):89-101. PubMed ID: 22983700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of oligo-adenylated small RNAs in the parasite Entamoeba and a potential role for small RNA control.
    Zhang H; Ehrenkaufer GM; Hall N; Singh U
    BMC Genomics; 2020 Dec; 21(1):879. PubMed ID: 33297948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, expression and functional analysis of a putative RNA-dependent RNA polymerase gene from maize (Zea mays L.).
    He J; Dong Z; Jia Z; Wang J; Wang G
    Mol Biol Rep; 2010 Feb; 37(2):865-74. PubMed ID: 19685166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans.
    Lu R; Yigit E; Li WX; Ding SW
    PLoS Pathog; 2009 Feb; 5(2):e1000286. PubMed ID: 19197349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents.
    Piombo E; Kelbessa BG; Sundararajan P; Whisson SC; Vetukuri RR; Dubey M
    Front Microbiol; 2023; 14():1076522. PubMed ID: 37032886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small RNAs - Big Players in Plant-Microbe Interactions.
    Huang CY; Wang H; Hu P; Hamby R; Jin H
    Cell Host Microbe; 2019 Aug; 26(2):173-182. PubMed ID: 31415750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal and zygotic gene regulatory effects of endogenous RNAi pathways.
    Almeida MV; de Jesus Domingues AM; Ketting RF
    PLoS Genet; 2019 Feb; 15(2):e1007784. PubMed ID: 30759082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional diversity of RNAi-associated sRNAs in fungi.
    Nicolás FE; Ruiz-Vázquez RM
    Int J Mol Sci; 2013 Jul; 14(8):15348-60. PubMed ID: 23887655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans.
    Aoki K; Moriguchi H; Yoshioka T; Okawa K; Tabara H
    EMBO J; 2007 Dec; 26(24):5007-19. PubMed ID: 18007599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Kingdom Small RNAs Among Animals, Plants and Microbes.
    Zeng J; Gupta VK; Jiang Y; Yang B; Gong L; Zhu H
    Cells; 2019 Apr; 8(4):. PubMed ID: 31018602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense.
    Yu D; Fan B; MacFarlane SA; Chen Z
    Mol Plant Microbe Interact; 2003 Mar; 16(3):206-16. PubMed ID: 12650452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.